32 research outputs found
Crystallization and preliminary X-ray analysis of adenylylsulfate reductase from Archaeoglobus fulgidus
A group of anaerobic microorganisms use sulfate as the terminal electron acceptor for energy conservation. The process of sulfate reduction involves several enzymatic steps. One of them is the conversion of adenylyl sulfate (adenosine-5′-phosphosulfate) to sulfite, catalyzed by adenylylsulfate reductase. This enzyme is composed of a FAD-containing α-subunit and a β-subunit harbouring two [4Fe–4S] clusters. Adenylylsulfate reductase was isolated from Archaeoglobus fulgidus under anaerobic conditions and crystallized using the hanging-drop vapour-diffusion method using PEG 4000 as precipitant. The crystals grew in space group P212121, with unit-cell parameters a = 72.4, b = 113.2, c = 194.0 Å. The asymmetric unit probably contains two αβ units. The crystals diffract beyond 2 Å resolution and are suitable for X-ray structure analysis
Effect of radiochemotherapy on T2* MRI in HNSCC and its relation to FMISO PET derived hypoxia and FDG PET
Abstract Background To assess the effect of radiochemotherapy (RCT) on proposed tumour hypoxia marker transverse relaxation time (T2*) and to analyse the relation between T2* and 18F-misonidazole PET/CT (FMISO-PET) and 18F-fluorodeoxyglucose PET/CT (FDG-PET). Methods Ten patients undergoing definitive RCT for squamous cell head-and-neck cancer (HNSCC) received repeat FMISO- and 3 Tesla T2*-weighted MRI at weeks 0, 2 and 5 during treatment and FDG-PET at baseline. Gross tumour volumes (GTV) of tumour (T), lymph nodes (LN) and hypoxic subvolumes (HSV, based on FMISO-PET) and complementary non-hypoxic subvolumes (nonHSV) were generated. Mean values for T2* and SUVmean FDG were determined. Results During RCT, marked reduction of tumour hypoxia on FMISO-PET was observed (T, LN), while mean T2* did not change significantly. At baseline, mean T2* values within HSV-T (15 ± 5 ms) were smaller compared to nonHSV-T (18 ± 3 ms; p = 0.051), whereas FDG SUVmean (12 ± 6) was significantly higher for HSV-T (12 ± 6) than for nonHSV-T (6 ± 3; p = 0.026) and higher for HSV-LN (10 ± 4) than for nonHSV-LN (5 ± 2; p ≤ 0.011). Correlation between FMISO PET and FDG PET was higher than between FMSIO PET and T2* (R2 for GTV-T (FMISO/FDG) = 0.81, R2 for GTV-T (FMISO/T2*) = 0.32). Conclusions Marked reduction of tumour hypoxia between week 0, 2 and 5 found on FMISO PET was not accompanied by a significant T2*change within GTVs over time. These results suggest a relation between tumour oxygenation status and T2* at baseline, but no simple correlation over time. Therefore, caution is warranted when using T2* as a substitute for FMISO-PET to monitor tumour hypoxia during RCT in HNSCC patients. Trial registration DRKS, DRKS00003830 . Registered 23.04.2012
Correction to: Effect of radiochemotherapy on T2* MRI in HNSCC and its relation to FMISO PET derived hypoxia and FDG PET
Following the publication of this article [1], the authors noticed that figures 2, 3, 4 and 5 were in the incorrect order and thus had incorrect captions