837 research outputs found
Spin Transport in Disordered Two-Dimensional Hopping Systems with Rashba Spin-Orbit Interaction
The influence of Rashba spin-orbit interaction on the spin dynamics of a
topologically disordered hopping system is studied in this paper. This is a
significant generalization of a previous investigation, where an ordered
(polaronic) hopping system has been considered instead. It is found, that in
the limit, where the Rashba length is large compared to the typical hopping
length, the spin dynamics of a disordered system can still be described by the
expressions derived for an ordered system, under the provision that one takes
into account the frequency dependence of the diffusion constant and the
mobility (which are determined by charge transport and are independent of
spin). With these results we are able to make explicit the influence of
disorder on spin related quantities as, e.g., the spin life-time in hopping
systems.Comment: 12 pages, 6 figures, some clarifications adde
Revival of Silenced Echo and Quantum Memory for Light
We propose an original quantum memory protocol. It belongs to the class of
rephasing processes and is closely related to two-pulse photon echo. It is
known that the strong population inversion produced by the rephasing pulse
prevents the plain two-pulse photon echo from serving as a quantum memory
scheme. Indeed gain and spontaneous emission generate prohibitive noise. A
second -pulse can be used to simultaneously reverse the atomic phase and
bring the atoms back into the ground state. Then a secondary echo is radiated
from a non-inverted medium, avoiding contamination by gain and spontaneous
emission noise. However, one must kill the primary echo, in order to preserve
all the information for the secondary signal. In the present work, spatial
phase mismatching is used to silence the standard two-pulse echo. An
experimental demonstration is presented.Comment: 13 pages, 6 figure
Measuring the Accuracy of Object Detectors and Trackers
The accuracy of object detectors and trackers is most commonly evaluated by
the Intersection over Union (IoU) criterion. To date, most approaches are
restricted to axis-aligned or oriented boxes and, as a consequence, many
datasets are only labeled with boxes. Nevertheless, axis-aligned or oriented
boxes cannot accurately capture an object's shape. To address this, a number of
densely segmented datasets has started to emerge in both the object detection
and the object tracking communities. However, evaluating the accuracy of object
detectors and trackers that are restricted to boxes on densely segmented data
is not straightforward. To close this gap, we introduce the relative
Intersection over Union (rIoU) accuracy measure. The measure normalizes the IoU
with the optimal box for the segmentation to generate an accuracy measure that
ranges between 0 and 1 and allows a more precise measurement of accuracies.
Furthermore, it enables an efficient and easy way to understand scenes and the
strengths and weaknesses of an object detection or tracking approach. We
display how the new measure can be efficiently calculated and present an
easy-to-use evaluation framework. The framework is tested on the DAVIS and the
VOT2016 segmentations and has been made available to the community.Comment: 10 pages, 7 Figure
Thermoelectric three-terminal hopping transport through one-dimensional nanosystems
A two-site nanostructure (e.g, a "molecule") bridging two conducting leads
and connected to a phonon bath is considered. The two relevant levels closest
to the Fermi energy are connected each to its lead. The leads have slightly
different temperatures and chemical potentials and the nanos- tructure is also
coupled to a thermal (third) phonon bath. The 3 x 3 linear transport
("Onsager") matrix is evaluated, along with the ensuing new figure of merit,
and found to be very favorable for thermoelectric energy conversion.Comment: Accepted by Phys. Rev.
Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives
Drug-resistance testing, or antimicrobial susceptibility testing (AST), is mandatory for Mycobacterium tuberculosis in cases of failure on standard therapy. We reviewed the different methods and techniques of phenotypic and genotypic approaches. Although multiresistant and extensively drug-resistant (MDR/XDR) tuberculosis is present worldwide, AST for M. tuberculosis (AST-MTB) is still mainly performed according to the resources available rather than the drug-resistance rates. Phenotypic methods, i.e. culture-based AST, are commonly used in high-income countries to confirm susceptibility of new cases of tuberculosis. They are also used to detect resistance in tuberculosis cases with risk factors, in combination with genotypic tests. In low-income countries, genotypic methods screening hot-spot mutations known to confer resistance were found to be easier to perform because they avoid the culture and biosafety constraint. Given that genotypic tests can rapidly detect the prominent mechanisms of resistance, such as the rpoB mutation for rifampicin resistance, we are facing new challenges with the observation of false-resistance (mutations not conferring resistance) and false-susceptibility (mutations different from the common mechanism) results. Phenotypic and genotypic approaches are therefore complementary for obtaining a high sensitivity and specificity for detecting drug resistances and susceptibilities to accurately predict MDR/XDR cure and to gather relevant data for resistance surveillance. Although AST-MTB was established in the 1960s, there is no consensus reference method for MIC determination against which the numerous AST-MTB techniques can be compared. This information is necessary for assessing in vitro activity and setting breakpoints for future anti-tuberculosis agents
Shaping the Internet: 10 Years of IXP Growth
Over the past decade, IXPs have been playing a key role in enabling interdomain connectivity. Their traffic volumes have grown dramatically and their physical presence has spread throughout the world. While the relevance of IXPs is undeniable, their long-term contribution to the shaping of the current Internet is not fully understood yet. In this paper, we look into the impact on Internet routes of the intense IXP growth over the last decade. We observe that while in general IXPs only have a small effect in path shortening, very large networks do enjoy a clear IXP-enabled path reduction. We also observe a diversion of the routes, away from the central Tier-1 ASes supported by IXPs. Interestingly, we also find that whereas IXP membership has grown, large and central ASes have steadily moved away from public IXP peerings, whereas smaller ones have embraced them. Despite all this changes, we find though that a clear hierarchy remains, with a small group of highly central network
- …