2,538 research outputs found
A New Model for the Hard Time Lags in Black Hole X-Ray Binaries
The time-dependent Comptonized output of a cool soft X-ray source drifting
inward through an inhomogeneous hot inner disk or corona is numerically
simulated. We propose that this scenario can explain from first principles the
observed trends in the hard time lags and power spectra of the rapid aperiodic
variability of the X-ray emission of Galactic black-hole candidates.Comment: 10 pages, including 2 figures; uses epsf.sty, rotate.sty; accepted
for ApJ Letter
The long-term optical spectral variability of BL Lacertae
We present the results from a study of the long-term optical spectral
variations of BL Lacertae, using the long and well-sampled B and R-band light
curves of the Whole Earth Blazar Telescope (WEBT) collaboration, binned on time
intervals of 1 day. The relation between spectral slope and flux (the spectrum
gets bluer as the source flux increases) is well described by a power-law
model, although there is significant scatter around the best-fitting model
line. To some extent, this is due to the spectral evolution of the source
(along well-defined loop-like structures) during low-amplitude events, which
are superimposed on the major optical flares, and evolve on time scales of a
few days. The "bluer-when-brighter" mild chromatism of the long-term variations
of the source can be explained if the flux increases/decreases faster in the B
than in the R band. The B and R-band variations are well correlated, with no
significant, measurable delays larger than a few days. On the other hand, we
find that the spectral variations lead those in the flux light curves by ~ 4
days. Our results can be explained in terms of Doppler factor variations due to
changes in the viewing angle of a curved and inhomogeneous emitting jet.Comment: 7 pages, 5 figures, accepted for publication in A&
Modeling the Emission Processes in Blazars
Blazars are the most violent steady/recurrent sources of high-energy
gamma-ray emission in the known Universe. They are prominent emitters of
electromagnetic radiation throughout the entire electromagnetic spectrum. The
observable radiation most likely originates in a relativistic jet oriented at a
small angle with respect to the line of sight. This review starts out with a
general overview of the phenomenology of blazars, including results from a
recent multiwavelength observing campaign on 3C279. Subsequently, issues of
modeling broadband spectra will be discussed. Spectral information alone is not
sufficient to distinguish between competing models and to constrain essential
parameters, in particular related to the primary particle acceleration and
radiation mechanisms in the jet. Short-term spectral variability information
may help to break such model degeneracies, which will require snap-shot
spectral information on intraday time scales, which may soon be achievable for
many blazars even in the gamma-ray regime with the upcoming GLAST mission and
current advances in Atmospheric Cherenkov Telescope technology. In addition to
pure leptonic and hadronic models of gamma-ray emission from blazars,
leptonic/hadronic hybrid models are reviewed, and the recently developed
hadronic synchrotron mirror model for TeV gamma-ray flares which are not
accompanied by simultaneous X-ray flares (``orphan TeV flares'') is revisited.Comment: Invited Review at "The Multimessenger Approach to Gamma-Ray Sources",
Barcelona, Spain, July 2006; submitted to Astrophysics and Space Science. 10
pages, including 6 eps figures. Uses Springer's ApSS macro
Momentum-Dependent Mass and AC Hall Conductivity of Quantum Anomalous Hall Insulators and Their Relation to the Parity Anomaly
The Dirac mass of a two-dimensional QAH insulator is directly related to the
parity anomaly of planar quantum electrodynamics, as shown initially in Phys.
Rev. Lett. 52, 18 (1984). In this work, we connect the additional
momentum-dependent Newtonian mass term of a QAH insulator to the parity
anomaly. By calculating the effective action, we reveal that the Newtonian mass
term acts like a parity-breaking element of a high-energy regularization
scheme. As such, it is directly related to the parity anomaly. In addition, the
calculation of the effective action allows us to determine the finite frequency
correction to the DC Hall conductivity of a QAH insulator. We derive that the
leading order AC correction contains a term proportional to the torsional Hall
viscosity. This paves the way to measure this non-dissipative transport
coefficient via electrical or magneto-optical experiments. Moreover, we prove
that the Newtonian mass significantly changes the resonance structure of the AC
Hall conductivity in comparison to pure Dirac systems like graphene
The spectrum of large powers of the Laplacian in bounded domains
We present exact results for the spectrum of the Nth power of the Laplacian
in a bounded domain. We begin with the one dimensional case and show that the
whole spectrum can be obtained in the limit of large N. We also show that it is
a useful numerical approach valid for any N. Finally, we discuss implications
of this work and present its possible extensions for non integer N and for 3D
Laplacian problems.Comment: 13 pages, 2 figure
- …