3 research outputs found

    Single-cell transcriptomics identifies CD44 as a marker and regulator of endothelial to haematopoietic transition.

    Get PDF
    The endothelial to haematopoietic transition (EHT) is the process whereby haemogenic endothelium differentiates into haematopoietic stem and progenitor cells (HSPCs). The intermediary steps of this process are unclear, in particular the identity of endothelial cells that give rise to HSPCs is unknown. Using single-cell transcriptome analysis and antibody screening, we identify CD44 as a marker of EHT enabling us to isolate robustly the different stages of EHT in the aorta-gonad-mesonephros (AGM) region. This allows us to provide a detailed phenotypical and transcriptional profile of CD44-positive arterial endothelial cells from which HSPCs emerge. They are characterized with high expression of genes related to Notch signalling, TGFbeta/BMP antagonists, a downregulation of genes related to glycolysis and the TCA cycle, and a lower rate of cell cycle. Moreover, we demonstrate that by inhibiting the interaction between CD44 and its ligand hyaluronan, we can block EHT, identifying an additional regulator of HSPC development

    Single-cell transcriptomics identifies CD44 as a marker and regulator of endothelial to haematopoietic transition

    Get PDF
    The endothelial to haematopoietic transition (EHT) is the process whereby haemogenic endothelium differentiates into haematopoietic stem and progenitor cells (HSPCs). The intermediary steps of this process are unclear, in particular the identity of endothelial cells that give rise to HSPCs is unknown. Using single-cell transcriptome analysis and antibody screening we identified CD44 as a new marker of EHT enabling us to isolate robustly the different stages of EHT in the aorta gonad mesonephros (AGM) region. This allowed us to provide a very detailed phenotypical and transcriptional profile for haemogenic endothelial cells, characterising them with high expression of genes related to Notch signalling, TGFbeta/BMP antagonists (Smad6, Smad7 and Bmper) and a downregulation of genes related to glycolysis and the TCA cycle. Moreover, we demonstrated that by inhibiting the interaction between CD44 and its ligand hyaluronan we could block EHT, identifying a new regulator of HSPC development
    corecore