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Single-cell transcriptomics identifies CD44
as a marker and regulator of endothelial
to haematopoietic transition
Morgan Oatley1,12, Özge Vargel Bölükbası 1,7,12, Valentine Svensson 2,3,8, Maya Shvartsman1,

Kerstin Ganter1, Katharina Zirngibl4, Polina V. Pavlovich1,5,9, Vladislava Milchevskaya4,10, Vladimira Foteva1,

Kedar N. Natarajan 2,11, Bianka Baying6, Vladimir Benes 6, Kiran R. Patil 4, Sarah A. Teichmann 2 &

Christophe Lancrin 1*

The endothelial to haematopoietic transition (EHT) is the process whereby haemogenic

endothelium differentiates into haematopoietic stem and progenitor cells (HSPCs). The

intermediary steps of this process are unclear, in particular the identity of endothelial cells

that give rise to HSPCs is unknown. Using single-cell transcriptome analysis and antibody

screening, we identify CD44 as a marker of EHT enabling us to isolate robustly the different

stages of EHT in the aorta-gonad-mesonephros (AGM) region. This allows us to provide a

detailed phenotypical and transcriptional profile of CD44-positive arterial endothelial cells

from which HSPCs emerge. They are characterized with high expression of genes related to

Notch signalling, TGFbeta/BMP antagonists, a downregulation of genes related to glycolysis

and the TCA cycle, and a lower rate of cell cycle. Moreover, we demonstrate that by inhi-

biting the interaction between CD44 and its ligand hyaluronan, we can block EHT, identifying

an additional regulator of HSPC development.
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Understanding the developmental origin of haematopoietic
stem and progenitor cells (HSPCs) is of critical impor-
tance to efforts to produce blood and blood products

in vitro for medical applications. HSPCs originate from endo-
thelial cells in the aorta-gonad-mesonephros (AGMs) of mid-
gestation embryos1,2. This process known as the endothelial to
haematopoietic transition (EHT) requires drastic morphological
changes that have been directly visualized through time-lapse
imaging studies both in vitro and in vivo3–6. EHT is a highly
conserved process that has been studied across vertebrate models
from Xenopus and zebrafish to mice7. Importantly, the human
definitive blood system also has an endothelial origin8.

The best tools so far to detect endothelial cells with haemogenic
capabilities rely on using fluorescent reporters under the control
of Runx19 or Gfi110 regulatory elements, two key transcription
factors in the process of EHT. Cells expressing these transcription
factors already co-express blood and endothelial genes. However,
we still do not know the nature of the endothelial cells that will
acquire the expression of these transcription factors. Nor do we
know whether any endothelial cell in the AGM can initiate the
haematopoietic programme or if a certain type of endothelial cell
is primed to undergo EHT.

Despite our lack of characterization of the definitive precursor
to HSPC development, haemogenic endothelium (HE), recent
advances have been made in terms of in vitro HSPC generation via
an endothelial intermediate. Through the use of transcription
factor cocktails, both human pluripotent stem cells via a HE
stage and adult mouse endothelial cells have been successfully
reprogrammed into multi-potent, definitive haematopoietic
stem cells (HSCs)11,12. However, the use of endothelial popula-
tions in the process emphasizes the importance of an improved
understanding of HE.

The early haematopoietic hierarchy has been described
as a three-step process based on phenotypic characteristics.
Specifically, Pro-HSC, Pre-HSC type I and type II populations
have been defined based on their expression of the cell surface
markers CD41, CD43 and CD45, as well as the time taken
to mature into definitive HSCs in OP9 co-culture13. Recently,
an in-depth transcriptional investigation was performed on the
type I and type II Pre-HSC populations at day 11 of mouse
embryonic development; however, the earlier stages of EHT
remain largely uncharacterized14. Indeed, gaining a solid under-
standing of HE and the initial steps that endothelial cells must
take to become HSPCs has proved difficult in the absence of
a robust marker.

Through antibody screening and single-cell RNA sequencing
(sc-RNA-seq), we identified CD44 as a marker of EHT, enabling
the isolation of key cellular stages of blood cell formation in the
embryonic vasculature. CD44 is a cell surface receptor principally
involved in the binding of the extracellular matrix molecule
hyaluronan15. Its cell surface expression has been used to identify
cancer stem cell populations and has been strongly linked to the
metastatic potential of many cancers16–20. Although previous
research has revealed the importance of CD44 in HSPC migration
to the bone marrow, the role of the receptor in early embryonic
haematopoiesis has not been characterized21. Using CD44
expression in conjunction with VE-Cadherin (VE-Cad) and Kit,
we are able to clearly differentiate between the different types of
AGM endothelial cells, Pre-HSPC-I and Pre-HSPC-II more
accurately than using the combination of VE-Cad, CD41, CD43
and CD45 markers. This has allowed us to perform extensive
transcriptional profiling, making it possible to characterize the
very earliest changes in haematopoietic differentiation from
endothelial cells. Moreover, by disrupting the interaction of CD44
and its ligand, we could inhibit EHT, demonstrating an unex-
pected role for CD44 in the emergence of HSPCs.

Results
CD44 is a potential marker of early haematopoietic fate.
HSPCs have an endothelial origin within the embryo4–6,22. To
better characterize the EHT, we performed both an in vitro
antibody screen and an in vivo sc-RNA-seq experiment to
identify markers allowing the identification of subpopulations
within VE-Cad+ endothelial cells (Supplementary Fig. 1). Anti-
bodies against 176 cell surface markers23 were tested against the
VE-Cad+ population generated from the in vitro ESC differ-
entiation system into blood cells24. Forty-two of these markers
were expressed on VE-Cad+ cells (Supplementary Table 1). We
looked for bimodal expression to separate distinct endothelial
populations and identified a shortlist of 16 candidates to test
in vivo, including CD41 and Kit, already known to split the VE-
Cad+ cells13. Six of these markers (CD44, CD51, CD61, CD93,
MadCam1 and Sca1) were found to split the VE-Cad+ endo-
thelial population of the AGM in two (Fig. 1a and Supplementary
Fig. 2). In parallel, we used sc-RNA-seq to analyse the tran-
scriptional profiles of VE-Cad+ cells from the AGM region at
E10.5 (Fig. 1). Clustering analysis identified a population with
both haematopoietic and endothelial gene expression, distinct
from the other endothelial population (Fig. 1b and Supplemen-
tary Data 1). Bioinformatics analysis showed that Cd44 is
one of the best marker genes for this population of transitioning
cells co-expressing endothelial and haematopoietic genes
(Fig. 1c). The expression of Cd44 was also positively correlated
with other known haematopoietic markers such as Runx1, Gfi1
and Adgrg1 (Gpr56) (Fig. 1d). Given the association of Cd44 with
endothelial cells undergoing EHT at both the protein and mRNA
level, we decided to further investigate its role in embryonic
haematopoiesis.

CD44 marks different cell populations in the AGM. To validate
our screening results and investigate the identity of CD44+ cells,
we performed immunofluorescence and more detailed flow
cytometry analysis on the AGM region of mouse embryos
(Fig. 2). Immunofluorescence of cross-sections of mouse AGMs
revealed that CD44 marked cells that were part of the vascular
wall and cells that were incorporated in haematopoietic clusters at
E10 and E11 (Fig. 2a and Supplementary Fig. 3). Different levels
of CD44 expression could be noticed including some parts
of the arterial wall being negative for this marker (Supplementary
Fig. 3). Flow cytometry revealed that CD44 expression sig-
nificantly increased in the VE-cad+ endothelium of the
AGM between E9.5 and E10.5 when cells are undergoing EHT
(Fig. 2b, c). Furthermore, by staining with an antibody against Kit
(a marker of intra-aortic haematopoietic clusters)25, we found
that a large proportion of cells with lower levels of CD44
expressed little or no Kit (Fig. 2d).

By grouping the cells based on their expression of CD44 and
Kit, we found these populations to be significantly different in
terms of cell size, suggestive of cells undergoing a morphological
transition (Fig. 2e). Altogether, our results indicate that CD44
marks a subset of endothelial cells and cells in the haematopoietic
clusters of the AGM during the key window of HSPCs
development in the mouse embryo.

Detection of two CD44+ populations expressing blood genes.
Using the Biomark HD single-cell quantitative PCR (qPCR)
platform, we analysed the expression of 95 genes associated with
both endothelial and haematopoietic cell types24. We performed
extensive transcriptional profiling on the CD44Neg, CD44Low-

KitNeg, CD44LowKitPos and CD44High populations identified
(Fig. 2d) between E9.5 and E11.5 (342 cells in total). We found
that the CD44LowKitPos and CD44High populations expressed
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Fig. 1 Search for markers to dissect the endothelial to hematopoietic transition. a FACS plots of cells isolated from the AGM region at E11, stained with
VE-Cad and indicated cell surface markers selected from the antibody screen. b Principal component analysis of the single-cell RNA-seq data done at E10.5.
Cells expressing haematopoietic genes are marked in red, while the other cells are marked in green. c Volcano plot showing a selection of marker genes
specific to the group of cells expressing haematopoietic genes. Cd44 is highlighted with a red circle. d Heatmap displaying the expression of a selection of
genes in the endothelial and haematopoietic clusters. Cd44 is highlighted in red. See also Supplementary Fig. 1 and Supplementary Data 1.
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numerous haematopoietic genes (Supplementary Fig. 4 and
Supplementary Data 2). The CD44LowKitPos cells also expressed
many endothelial genes as in our sc-RNA-seq analysis (Fig. 1d);
however, the CD44High cells appeared to be more advanced in the
EHT process and lacked endothelial gene expression (Supple-
mentary Fig. 4). Of note, the CD44LowKitPos population expres-
sed specifically Gfi1 and Itgb3, as well as Gata2, Runx1, Lyl1, Erg,
Fli1, Lmo2 and Tal1, whose simultaneous co-expression is
responsible for the dual endothelial-haematopoietic identity of
pre-HSPCs (Supplementary Fig. 4)24.

Conversely, both the CD44Neg and CD44LowKitNeg popula-
tions showed specific endothelial gene signatures and lacked
haematopoietic gene expression (Supplementary Fig. 4). Despite
their different CD44 expression patterns, these cell populations
clustered together (Supplementary Fig. 4). We repeated this
experiment using another selection of 96 genes based on our sc-
RNA-seq experiment (Supplementary Table 2 and Supplementary
Fig. 5). With this gene list, we were able to confirm the dual
endothelial-haematopoietic and haematopoietic identities of
the CD44LowKitPos and CD44High populations, respectively.
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Surprisingly, the CD44Neg and CD44LowKitNeg populations
formed two distinct clusters (Supplementary Fig. 5b, Fig. 3a, b
and Supplementary Data 3). In addition to Cd44, we found the
genes Adgrg6, Fbn1, Pde3a, Smad6, Smad7 and Sox6 to be
upregulated in the CD44LowKitNeg cells compared with CD44Neg.
In contrast, Bmp4, Kit, Hmmr and Pde2a were more expressed in
CD44Neg endothelial cells (Supplementary Fig. 5b).

Although the four groups defined by VE-Cad, CD44 and Kit
were confirmed to be distinct transcriptionally; our clustering
analysis found a fifth population (SC_3) composed of cells from
both CD44LowKitNeg and CD44LowKitPos groups (Supplementary
Fig. 5b and Fig. 3a). Its transcriptional profile was found to be
intermediary between SC_2 (CD44LowKitNeg) and SC_4
(CD44LowKitPos), e.g., it expressed Adgrg1, Runx1, Itgb3 and Spi1
such as SC_4 but still expressed Adgrg6 and Pcdh12 such as SC_2
(Supplementary Fig. 5b). Interestingly, it is within this transitional
SC_3 population that we saw the upregulation of Runx1, Spi1 and
Gfi1, which are three of the four transcription factors used to
reprogramme adult mouse endothelial cells into HSCs12.

In conclusion, single-cell quantitative reverse transcriptase
PCR (q-RT-PCR) analysis identified three homogeneous

VE-CadPos CD44Pos populations (CD44LowKitNeg, CD44LowKit-
Pos and CD44High) with an increasing haematopoietic gene
expression and decreasing endothelial gene transcription. This
would suggest a developmental link between the CD44Low

populations where CD44LowKitNeg cells would be the direct
precursors of the CD44LowKitPos population, which would then
go on to generate CD44High cells.

Pro-HSC, Pre-HSC-I and Pre-HSC-II populations express
CD44. To place our results in the context of known AGM
endothelial subpopulations, we performed transcriptional analysis
of the Pro-HSC, Pre-HSC type I and Pre-HSC type II populations
defined by the combination of VE-cad, CD41, CD43 and CD45
markers (Supplementary Fig. 6a and Fig. 4a)13. Gating used in
Fig. 4a was determined based on fluorescence minus one controls
and reflects the conditions we used to sort these rare haemato-
poietic populations. Although the gates were not perfect, they
were chosen to ensure we could capture the necessary number of
cells for analysis. From a sample of 0.835 × 106 cells we analysed,
there were 168 Pro-HSCs, 244 Pre-HSCs type I and 708 Pre-

Fig. 2 CD44 splits the VE-Cadherin+ cells of the AGM into different populations. a Immunofluorescence of VE-Cad (magenta) and CD44 (green)
expression in a cross-section of the AGM region of a wild-type embryo at E10 (32 somite pairs). Images 1 and 2 show higher magnification of the areas
highlighted in the main image, showing CD44 marking endothelial cells in the vascular wall and a haematopoietic cluster. Scale bars represents 25 μM.
b FACS plots indicating percentage of cells expressing high levels of VE-Cad from dissected AGMs of wild-type embryos. The histograms indicate the
percentage of VE-CadHigh cells positive for CD44 at both E9.5 (28 somite pairs) and E10.5 (35 somite pairs) compared with the FMO. c Percentage of
CD44+ cells within the VE-CadHigh fraction, each data point represents an independent experiment and independent pooled litter of embryos, E9.5 n= 4
and E10.5 n= 5. We compared the average proportion of CD44+ cells at E9.5 (M= 22.13, SD= 4.85) to E10.5 (M= 30.88, SD= 5.08). Significance was
determined by a Welch’s two-sample t-test, t(6.7)= 2.635, p-value= 0.0345. d Representative FACS plots of gating strategy and expression of VE-Cad
and CD44 in the AGM region of wild-type embryos at E10 (30–34 somite pairs). Expression of Kit cell surface marker is highlighted for the CD44Low

population. Full gating strategy is shown in Supplementary Fig. 5a. e Mean FSC-A as an indication of cell size is plotted for each population (CD44Neg,
CD44LowKitNeg, CD44LowKitPos and CD44High) for five independent litters of E10 wild-type embryos (n= 5). Significance was determined by a one-way
ANOVA, F(3, 16)= 142.01, p-value < 0.0001 followed by Tukey’s HSD post-hoc tests to determine where the significance lies *p < 0.05, **p < 0.01, ***p <
0.001. Error bars represent SD. Source data are provided as a Source Data file. See also Supplementary Fig. 2.
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HSCs type II observed. Given these low cell numbers, it was not
practical to use more stringent gating.

Interestingly, all populations were CD44 positive (Fig. 4b and
Supplementary Fig. 6b). Following hierarchical clustering, we
found three clusters: the first mostly composed of Pro-HSCs, a
second being a mix of Pro-HSCs and Pre-HSCs type I, and a third
one composed only of Pre-HSCs type II (Supplementary Fig. 7
and Fig. 4c). We then performed a clustering analysis in
conjunction with the populations defined by CD44 (Fig. 4d). This
revealed that the SC_5 (CD44High) population closely associated
with the Pre-HSC type II and the SC_4 (CD44LowKitPos)
population with Pre-HSC type I and part of the Pro-HSCs.
SC_2 (CD44LowKitNeg) clustered closely with the remaining Pro-
HSCs. Finally, only five cells with Pre-HSCs type I and Pro-HSCs
phenotype clustered with the SC_1 (CD44Neg). Ninety-seven per
cent of Pro-HSCs, Pre-HSCs type I and Pre-HSCs type II were
CD44 positive (Supplementary Fig. 7a and Supplementary Data 4).
Overall, we have demonstrated that the phenotypes based on
CD44 expression in combination with Kit could allow us to isolate
all key populations in the process of HSCs formation more
accurately than the phenotypes previously described.

CD44Neg and CD44LowKitNeg are distinct transcriptionally. To
further compare the two endothelial populations found in the
AGM, we performed RNA-seq on 25-cell bulk samples from these
populations across 3 different time points (E9.5, E10 and E11).
We analysed as well the more advanced stages in EHT:
CD44LowKitPos at E9.5 and E10, and CD44High at E11. The bulk
RNA-seq approach allowed us to detect low abundant genes
(such as genes encoding transcription factors) more efficiently
than sc-RNA-seq and also to measure smaller changes in gene
expression between populations.

The samples clustered according to their marker expression,
despite the difference in developmental time, confirming our
previous experiments (Fig. 5a and Supplementary Data 5). We
identified several haematopoietic genes switched on in the
CD44LowKitNeg population, including Ctsc, Nfe2, Runx1 and Ifitm1,
suggesting that these cells were subjected to the EHT process
(Fig. 5b). The expression pattern of endothelial genes fits with our
previous observations—more highly expressed in CD44Neg and
CD44LowKitNeg, moderately expressed in CD44LowKitPos and
absent in CD44High (Fig. 5b). Moreover, we used this dataset to
check the expression of genes corresponding to proteins we found
in our antibody screen (Fig. 1a). Cd93 and Madcam1 showed an
endothelial expression pattern and could be used to separate
endothelial from blood cells in the AGM. In contrast, Itgb3 marks
specifically the CD44LowKitPos population, whereas Ly6e marks
both CD44LowKitPos and CD44High populations as shown pre-
viously in Fig. 3 and Supplementary Fig. 5.

Interestingly, this transcriptome analysis showed strong differ-
ences between the two endothelial populations of the AGM. We
found 1605 genes differentially expressed between these two
populations (p-value < 0.01, Wald’s test). Among them, several
genes from the Notch pathway (Hey2, Jag1, Dll4, Hey1 and Notch1)
were significantly more expressed in the CD44LowKitNeg population
compared with CD44Neg. Similarly, antagonists of the transforming
growth factor-β (TGFβ)/bone morphogenetic protein (BMP)
pathway, including Smad6, Smad7 and Bmper, were upregulated
in CD44LowKitNeg cells compared with CD44Neg. In contrast, target
genes of the Wnt pathway (Lef1, Ccnd1 andMyc) were more highly
expressed in CD44Neg compared with CD44LowKitNeg. From this
analysis we could also identify specific markers for each of the
endothelial populations (Fig. 5c). Nr2f2, Pde2a, Aplnr and Kcne3
marked specifically CD44Neg cells, whereas Adgrg6, Hey2, Akr1c14,
Fas and Ltbp1 strongly marked the CD44LowKitNeg population.

The sc-RNA-seq performed by another group investigated the
different stages of EHT in the AGM14, but were unable to identify
the CD44LowKitNeg population. The gene expression pattern they
obtained for the three other populations was very similar to the
one we found with our bulk RNA analysis (Supplementary Fig. 8
and Supplementary Data 6). In addition, a recent study defined
the HE in the AGM by the VE-Cad+ Gfi1+ Kit− phenotype using
the Gfi1:H2B-Tomato reporter mouse model10 and characterized
it by sc-RNA-seq26. This population matched with the CD44Low-

KitNeg cells. Indeed, it expressed Cd44, Hey2, Smad6, Smad7 and
Adgrg6 but lacked the expression of CD44Neg endothelial
cell specific genes such as Pde2a, Aplnr, Nrp2 and Nr2f2
(Supplementary Fig. 9 and Supplementary Data 7).

Of note, a recently published mouse organogenesis sc-RNA-seq
atlas27 allowed us to find that Cd44 gene expression was restricted
to a subset of arterial endothelial cells (co-expression of Gja5,
Efnb2, Smad6 and Smad7) between E9.5 and E13.5 of mouse
embryonic development (Supplementary Fig. 10) supporting our
transcriptome results. In contrast, Cd44 expression is absent from
most of adult mouse endothelial cells including arterial
endothelium in the Tabula Muris sc-RNA-seq atlas28 (Supple-
mentary Fig. 11).

Overall, our results support the hypothesis that the CD44Neg

cells and the CD44LowKitNeg cells belong to two distinct
endothelial populations. The CD44Neg population expresses
venous (Aplnr, Nr2f2 and Nrp2) and arterial (Sox17, Bmx and
Efnb2) markers, whereas the CD44LowKitNeg has a clear arterial
signature with stronger expression of Bmx, Jag1 and Hey2.
Moreover, there are clear transcriptional links between the two
CD44Low populations and the initiation of several blood markers
already at the CD44LowKitNeg stage suggests that this population
is in fact the endothelial precursor of CD44LowKitPos and
CD44High cells, and hence of haematopoietic development.

CD44LowKitNeg endothelial cells are quiescent. A large number
of the differentially expressed genes between the two endothelial
populations belonged to metabolic processes (395 out of 1605
genes; 1.32-fold enrichment, p-value < 0.05, Fisher’s exact test).
We therefore identified specific metabolic pathways distinguish-
ing the two populations (Fig. 6a, b and Supplementary Data 8).
Notably, the CD44LowKitNeg population showed a pronounced
downregulation of genes coding for enzymes involved in glyco-
lysis, the TCA cycle and respiration, suggesting reduced ATP
generation. Furthermore, amino acid and nucleotide biosynthesis
genes were also downregulated. Altogether, it suggests that the
CD44LowKitNeg is in a non-proliferative, metabolically quiescent
state, which is in line with the smaller size of this population
compared with the CD44Neg (Fig. 2e). To test this hypothesis, we
performed a cell cycle analysis of the four different CD44
populations at E10 and we found that indeed CD44LowKitNeg

population was the most quiescent compared with the other
endothelial subset (Fig. 6c and Supplementary Fig. 12). Interest-
ingly, the proliferation rate increased, as the cells were progres-
sing through EHT consistent with the observations made by
another group29.

Given that endothelial cells are known to obtain most of their
energy from glycolysis30, this change in metabolic status suggests
a loss of endothelial identity. These cells also show a marked
increase in the expression of pathways leading to lipids with
regulatory function: glycerolipids, glycerophospholipids, phos-
phatidylinositol and sphingolipids (Supplementary Fig. 13a).

Moreover, we observed that several genes involved in autophagy,
a process known to be regulated by phosphatidylinositol and
sphingolipids31–34, were also highly upregulated in the CD44Low-

KitNeg population (Supplementary Fig. 13b). Concordantly, two key
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processes accompanying autophagy, ubiquitylation and proteolysis,
were also upregulated. As autophagy has been shown to play a key
role in embryonic development and haematopoiesis35–37, this
provides further support to the CD44LowKitNeg cells being in transit
from endothelial to haematopoietic identity.

Runx1 is dispensable for the formation of CD44LowKitNeg.
CD44 has allowed us to clearly define the key VE-Cad+

populations in the AGM. The transcription factor RUNX1 is
essential for HSPC formation and is known to downregulate
endothelial identity through its target genes Gfi1 and Gfi1b10,38.
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Next, we decided to evaluate the impact of Runx1 loss of
function on the different CD44+ cells. Using a Runx1 knockout
mouse model39, we stained for VE-Cad, CD44 and Kit expres-
sion, and performed transcriptional profiling on the sorted cells
(Fig. 7, Supplementary Fig. 14 and Supplementary Data 9). We

found that in the absence of Runx1 there is a loss of CD44High

and CD44LowKitPos cells, and we observed a concomitant
increase in the frequency of the CD44LowKitNeg population
(Fig. 7a, b). Interestingly, we found no obvious transcriptional
differences between the CD44LowKitNeg populations derived
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from Runx1+/+ vs. Runx1−/− embryos, indicating that RUNX1
is not necessary for the formation of these endothelial cells but
for the promotion of the transition into CD44LowKitPos cells
(Supplementary Fig. 14).

VE-CadPos CD44Pos cells display haematopoietic potential. To
understand the haematopoietic potential of the different popu-
lations defined by VE-Cad, CD44 and Kit expression, we per-
formed ex vivo assays using an OP9 co-culture system. No

Fig. 6 Reduced expression of genes involved in TCA cycle and glycolysis in CD44LowKitNeg endothelial cells. a, b Overview of key metabolic nodes and
pathways enriched in differentially expressed genes when comparing the CD44LowKitNeg and CD44Neg endothelial populations. These were selected based
on reporter metabolite analysis. Pathway boxes summarize multiple genes/reporter metabolites (Supplementary Data 8). The mentioned upregulated and
downregulated genes refer to the expression in the CD44LowKitNeg population compared with CD44Neg. c Cell proliferation analysis of the four indicated
populations showing a representative flow cytometry profile of cell cycle status (top panel) and a bar graph summarizing the proportion of cells in G0/G1
cell cycle phases for each population (bottom panel) (n= 4 independent experiments). Error bars represent SD. A one-way ANOVA was used to compare
the proportion of cells in the G0/G1 phase across all populations F(3,12)= 30.24, p-value < 0.0001. A Tukey’s HSD post-hoc test was used to determine
where the significance lies, *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001. Source data are provided as a Source Data file.
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colonies were formed at the single-cell level from either the
CD44LowKitNeg or the CD44Neg populations. However, by plating
cells at a density of 300 cells per well, we could observe round cell
colony formation from the CD44LowKitNeg population (4 out of
16 wells) but not from the CD44Neg (0 out of 13 wells) (Fig. 8a).
As this growth occurred 4 times out of a total of 16 wells, the
frequency of cells giving rise to blood in CD44LowKitNeg

population is <1 in 300, which is in line with the very low
expression of haematopoietic genes in this population.

In contrast, using single-cell sorting, we found that the
CD44LowKitPos population was the most potent with an average
of 43% of single cells forming round cell colonies after 3 days of
growth. Similarly, the CD44High population produced haemato-
poietic colonies but with a lesser frequency; on average, 11% of
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single cells showed the ability to form haematopoietic colonies on
OP9 (Fig. 8b, c). To uncover the differentiation potential of the
cells generated by CD44LowKitPos and CD44High, we performed
colony-forming unit (CFU) assays following the OP9 co-culture.
Both populations readily generated both erythroid and myeloid
colonies with the CD44LowKitPos population demonstrating a
significantly higher capacity than the CD44High population
(Fig. 8d, e). However, the fourfold increase in the number of
CD44LowKitPos colonies on OP9 did not correspond to a fourfold
increase in CFU colonies, suggesting a higher replating efficiency
of the CD44High cells compared with CD44LowKitPos (Fig. 8f). We
further tested the lymphoid potential of the CD44High population
by growing cells for 21 days on either OP9 or OP9-DL1 with
lymphoid-promoting cytokines. We demonstrated that this
population could give rise to both B and T cells ex vivo (Fig. 8g
and Supplementary Fig. 15).

Our transcriptome and fluorescence-activated cell sorting
(FACS) analyses showed that CD44LowKitPos were similar to
the Pre-HSC type I, whereas the CD44High were equivalent to
Pre-HSC type II (VE-CadPos CD45Pos). Pre-HSC type I gives rise
to type II in OP9 co-culture40 and, as expected, by isolating
CD44LowKitPos cells, we could demonstrate that they were
producing VE-CadPos CD45Pos on their way to produce blood
cells supporting the differentiation relationship between the two
CD44Pos KitPos populations (Supplementary Fig. 16).

Overall, we found that all populations expressing CD44
displayed the capacity to produce haematopoietic cells on OP9
cells including CD44LowKitNeg albeit at a very low frequency.

Interrupting hyaluronan binding to the CD44 reduces EHT. So
far, we demonstrated that CD44 was a very useful marker to
distinguish the different stages of EHT. Although the Cd44
knockout mice do not have a severe haematopoietic phenotype41,
compensatory mechanisms through other Hyaluronan receptors
(e.g., Hmmr42 expressed by some CD44LowKitPos and CD44High

cells in Fig. 3a) may be at play to diminish the consequences of
CD44 loss of function. To explore the functional role of CD44 in
EHT, we employed a pharmacological approach. By treating
CD44High-sorted cells with a CD44 blocking antibody known to
bind close to the hyaluronan binding site on the extracellular
domain of CD4429, we found that round cell colony formation
could be inhibited in a dose dependent manner (Fig. 9a, b). The
blocking antibody inhibited not only the number of colonies
deriving from the ex vivo sorted cells but also the size of the
colonies generated (Fig. 9c).

To further investigate the role of CD44 in EHT, we used the
in vitro ESC differentiation system mimicking embryonic
haematopoiesis24. We performed a haemangioblast culture and

analysed CD44 expression at day 1, 2 and 3. Endothelial cells
expressed CD44 at all tested time points (Fig. 9d).

We therefore applied the blocking antibody from the beginning
of the culture and found that treatment with the antibody halved
the number of HSPCs (VE-Cad− CD41+) produced and
significantly increased the percentage of endothelial cells in the
culture (Fig. 9e, f). We could not get this effect using another
CD44 antibody, which did not bind close to the hyaluronan
binding site (Supplementary Fig. 17), suggesting the importance
of CD44 interaction with its ligand for EHT. Given this result, we
next attempted to manipulate the amount of hyaluronan in the
culture. When 300 μg/mL of hyaluronidase was applied to the
haemangioblast culture, we again observed a block in EHT
characterized by a significant decrease in blood cell formation and
an increase in the percentage of Pre-HSPCs (VE-Cad+ CD41+)
(Fig. 9f). Using the methylumbelliferone (4MU) inhibitor, which
blocks the synthesis of hyaluronan, we also observed the
reduction of CD41+ cell number. Combining 4MU with
hyaluronidase had a much more potent effect with a clear block
in EHT at the Pre-HSPC stage.

In conclusion, these results demonstrate a regulatory role for
hyaluronan and its receptor CD44 in the formation of HSPCs.

Discussion
Using antibody screening and sc-RNA-seq, we discovered
that CD44 was a robust marker to distinguish all the main
populations in the EHT process in the AGM. Combining CD44
with Kit and VE-Cad allowed us to discriminate the different
stages of EHT more accurately than the method based on VE-
Cad, CD41, CD43 and CD45 cell surface markers13. In addition,
we showed that CD44 had an unexpected regulatory function in
the EHT process.

Our work has been instrumental in distinguishing the different
types of endothelial cells in the AGM region. Previously, Zhou
et al.14 found only one type of AGM endothelial cells, identical to
the CD44Neg population we described in the present study
(Supplementary Fig. 8). On the other hand, the study by Baron
et al.26 described two endothelial populations: non-HE and HE.
Surprisingly, they had no more than 100 genes differentially
expressed between them. In contrast, we found 1605 genes
changing between the two AGM endothelial populations we
identified. A close look at their E11 sc-RNA-seq data showed that
their non-HE cells were heterogeneous. Seventy-three per cent of
them were in fact HE cells with characteristics identical to the
CD44LowKitNeg population, while the remaining cells formed a
separate cluster of CD44Neg cells (Supplementary Fig. 9).
Therefore, our study is the first one to identify and compare
thoroughly the different types of AGM endothelial cells. The

Fig. 8 VE-Cad+ CD44+ populations have haematopoietic potential. a Images of OP9 co-cultures after 4 and 6 days of incubation. Haematopoietic
potential was observed from CD44LowKitNeg cells with colonies of round cells resulting from 300 cells sorted per well. No round cell colonies were observed
with CD44Neg cells. Scale bars represent 100 μM. b Images of OP9 co-culture after 3 days of culture are shown. A single CD44High or CD44LowKitPos cell
was FACS sorted onto a confluent OP9 stromal layer and incubated in HE medium. Scale bars represent 100 μM. c The percentage of single cells giving rise
to colonies was quantified across four independent experiments (n= 4). The graph compares the frequency of growth from single CD44High (M= 0.11, SD
= 0.07) cells with CD44LowKitPos cells (M= 0.43, SD= 0.22). Statistical significance was determined by a two-tailed, paired t-test, t(3)=−4.11, p-value=
0.026. Source data are provided as a Source Data file. d Colony-forming unit assays were performed following three days OP9 culture of CD44LowKitPos and
CD44High cells (100 cells per well). Cells were kept for a further 7 days in methocult medium before quantification. Images show representative CFU-E and
CFU-GEMM colonies. e The bar graphs show the number of CFUs generated per 100 initial FACS sorted cells (n= 4 independent experiments). Significance
was determined by two-tailed, paired t-tests (see Source Data file). f The bar graph indicates the total number of colony-forming units formed per initial
colony grown on the OP9 stromal layer. Although the CD44LowKitPos population gives rise to approximately six times more round cell colonies on OP9 then
the CD44High population, only ~2.5 times more CFUs are generated. Significance was determined by a two-tailed, paired t-test t(3)= 6.67, p-value= 0.0069
(n= 4 independent experiments). Source data are provided as a Source Data file. g B- and T-cell lymphoid assays were performed following 21 days of OP9
(B cells) and OP9-DL1 (T cells) culture of 50 FACS-sorted CD44High cells. Percentages of CD19+ (B-cells) and CD4+CD8a+ (immature T-cells) are shown.
*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001. Error bars indicate SD.
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CD44LowKitNeg cells have a gene expression signature strongly
compatible with arterial identity (e.g., expression of Efbn2 and
Sox17, and upregulation of Notch pathway target Hey2), while the
CD44Neg population co-expressed genes related to the venous
(e.g., Nr2f2 and Aplnr) and arterial cell fates (e.g., Efnb2 and
Sox17) (Fig. 5d). It is in line with previous sc-RNA-seq datasets

from the AGM14,26. In the first analysis by Zhou et al.14, 64% of
CD44Neg cells (18 out of 28) were Efnb2+Aplnr+, whereas 50%
of them (14 out of 28) were Sox17+Aplnr+ (Supplementary
Fig. 8). In the second dataset by Baron et al.26, 36% of them (4 out
of 11) were Efnb2+Aplnr+ and 18% (2 out of 11) were positive
for Sox17 and Aplnr (Supplementary Fig. 9).
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Of note, not all of the CD44Neg cells co-expressed arterial and
venous markers, suggesting heterogeneity within this population
(Supplementary Figs. 8 and 9). This could be attributed to the fact
that some of these endothelial cells come from the dorsal aorta
(Supplementary Fig. 3) and the rest from the cardinal veins,
which are entirely CD44Neg (Supplementary Fig. 10). Indeed,
cardinal veins are not removed when the AGM region is isolated,
because they are very close to the aorta. It would explain the
presence of endothelial cells expressing only venous markers
within the CD44Neg population.

Another interesting finding was the striking metabolic state
difference between the two endothelial populations. The CD44Neg

cells appeared much more metabolically active than the
CD44LowKitNeg, suggesting that the latter population is in a state
of quiescence. This was further supported by our cell cycle ana-
lysis (Fig. 6). This is surprising given that the acquisition of a
quiescent phenotype in endothelial cells occurs normally after
birth following the completion of angiogenesis. FOXO1 has been
described as an important transcription factor to induce quies-
cence in endothelial cells through suppression of Myc43.
Although we observe specific downregulation of Myc in
CD44LowKitNeg cells, Foxo1 has a similar level of expression in
the two endothelial populations (Supplementary Data 5).
Recently, a study comparing lung endothelial cells between infant
and adult mice showed that higher expression of SMAD6 and
SMAD7 was linked with the induction of endothelial cell quies-
cence typical in adulthood44. Interestingly, all the CD44LowKitNeg

cells co-expressed Smad6 and Smad7 at the single-cell level,
suggesting that the quiescent phenotype we observe could also be
linked to the co-expression of the two inhibitory Smads.

The acquisition of quiescence in this context could be the first
indication of haemogenic capacity. The metabolic features of the
CD44LowKitNeg population were coupled with an increase in
genes involved in autophagy. This is in line with the known role
of autophagy in embryogenesis, haematopoiesis and stem cell
maintenance35–37,45,46, such as protein and organelle turnover
and protection from reactive oxygen species. Our data thus
suggest that these cells mark the resetting of metabolic and reg-
ulatory states to initiate the EHT process.

We consequently propose that the CD44LowKitNeg population
is the source of HSPCs in the AGM (Fig. 10). Although it
was suggested that HE cells in the human pluripotent stem cell
differentiation model do not display arterial identity47, our results
clearly support the arterial source of HSPCs in the AGM.
Of note, the CD44 protein has been detected in intra-aortic

haematopoietic clusters during human embryogenesis48, sug-
gesting an evolutionary conservation of its expression pattern.

Another characteristic for the initiation of the EHT is the
inhibition of the BMP and TGFβ pathways as suggested by the
increased expression of Smad6, Smad7 and Bmper in the
CD44Low KitNeg arterial population. Expression of RUNX1 in
endothelial cells would then trigger haematopoietic gene expres-
sion. The dynamic interaction between the heptad of transcription
factors GATA2, RUNX1, LYL1, ERG, FLI1, LMO2 and TAL1 co-
expressed at the Pre-HSPC-I stage would eventually lead to the
loss of endothelial gene expression24 and give rise to the Pre-
HSPC-II stage, cells expressing only haematopoietic genes.

Interestingly, we also detected CD44 on endothelial cells
generated in the in vitro EHT model based on ESC differ-
entiation. Of note, the analysis of the mouse organogenesis sc-
RNA-seq atlas27 showed that the Cd44 gene was mostly
expressed by a fraction of arterial endothelial cells indicating
that this gene has a restricted expression pattern during
development (Supplementary Fig. 10). It made CD44 expres-
sion on endothelial cells in this in vitro model even more sig-
nificant. In addition, we have shown that endothelial cells
produced in vitro co-express the Smad6 and Smad7 genes as in
the AGM CD44Low KitNeg population24,49. The production of
blood progenitors in vitro is also going through an intermediary
stage expressing endothelial, haematopoietic genes, the key
transcription factors Erg, Fli1, Lmo2, Lyl1, Fli1, Tal1, Runx1
and Gfi1 as in the AGM24. Finally, even though HSCs have not
yet been generated from ESCs without the use of reprogram-
ming, definitive erythroid, myeloid and lymphoid cells could be
obtained from this model50. These lineages could also be pro-
duced upon transplantation of in vitro derived progenitors in
adult mice and could be detected up to 22 weeks after injection,
indicating a long-term reconstitution50. These elements con-
vinced us that studying CD44 role in the in vitro haemangio-
blast culture would be relevant to AGM EHT.

Our detailed transcriptomics analysis of haemogenic and non-
haemogenic endothelial cell populations in the AGM revealed the
prerequisites needed by endothelial cells to generate HSPCs.
Thus, our study may help to design protocols for the generation
of HSCs ex vivo without the use of transcription factors, which
still represents a considerable health risk. The manipulation of the
interaction between CD44 and hyaluronan could offer a strategy
for reprogramming endothelial cells into HSPCs.

In addition, our work could shed light on CD44 function in
other cellular transitions such as the epithelial–mesenchymal

Fig. 9 Blocking the interaction between CD44 and hyaluronan inhibits the EHT. a Images of round cell colonies generated from CD44High cells after
4 days of OP9 co-culture with different concentrations of KM201 anti-CD44 blocking antibody. Dotted line indicates approximate size of colonies. Scale
bar corresponds to 100 μm. b Dot plot comparing number of round cells colonies formed as a function of the concentration of anti-CD44 blocking antibody
applied. Source data are provided as a Source Data file. c Dot plot indicating the number of cells per colony as a function of the concentration of anti-CD44
blocking antibody applied. b, c Kruskal–Wallis tests were used to compare treatment groups and Dunn post-hoc test with Benjamini–Hochberg adjustment
was used to identify significance between the conditions (see Source Data file) where *p-value < 0.05, **p-value < 0.01 and ***p-value < 0.001. Each data
point represents one well. For each of the three independent experiments (n= 3), there were five different wells. Source data are provided as a Source Data
file. d Flow cytometry analysis of CD44 and VE-Cad expression in Hemangioblast culture between day 1 and day 3. The dot plots show expression of VE-
Cadherin and CD44 at the indicated time points. e Representative FACS plots of VE-Cad and CD41 expression after 2 days of haemangioblast
differentiation. Cells were either untreated (control) or treated with anti-CD44 blocking antibody, hyaluronidase enzyme, 4MU hyaluronan synthase
inhibitor or a combination. f Dot plot showing the population percentage for vascular smooth muscle (VSM) (VE-Cad−CD41−), endothelial cells (VE-Cad
+CD41−), Pre-HSPCs (VE-Cad+CD41+) and HSPCs (VE-Cad−CD41+) after 2 days of haemangioblast differentiation, summarizing the results of FACS
analysis shown in d. Each data point represents an independent experiment for the indicated conditions (n= 11 for control, n= 4 for 10 μg/mL KM201, n=
7 for 300 μg/mL Hyaluronidase, n= 4 for 500 μM 4MU and n= 4 for 300 μg/mL Hyaluronidase+ 500 μM 4MU). Significance was determined for VSM,
pre-HSPCs, and HSPC populations using a one-way ANOVA followed by Dunnett’s post-hoc tests (see Supplementary Material). As the distribution of
values for the endothelial population was not normally distributed a Kruskal–Wallis test was applied and significant differences evaluated with a Dunn post-
hoc test (see Source Data file). For d, *p-value < 0.05, **p-value < 0.01 and ***p-value < 0.001. Error bars represent SD. Source data are provided as a
Source Data file.
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transition occurring during metastasis23. Given the role of CD44
in the metastatic process, it is possible that there is an overlap in
its function for these transformations. Therefore, understanding
the down-stream targets of the CD44–hyaluronan interaction
could also have implications for cancer biology.

Methods
Timed mating and embryo dissection. For timed pregnancies, C57BL/6 wild-type
mice or Runx1+/− mice (two to three months old) were mated overnight. The
welfare of adult mice used in this work was covered by the licence number 17/
2019-PR approved by the Italian Health Ministry. Embryos were collected in
phosphate-buffered saline (PBS) supplemented with 10% fetal bovine serum (FBS)
(PAA Laboratories). The yolk sac of embryos derived from Runx1+/− mice were
genotyped using the Kappa Mouse Genotyping Kit (KAPA Biosystems) according
to the manufacturer’s instructions. E9.5 to E11.5 embryos were staged based on
somite counts. After removing the yolk sac, the AGM region was dissected by

removing the head and tail above and below the limb buds then removing the limb
buds, organs and somites by cutting ventrally and dorsally either side of the AGM.

All experiments were performed following the guidelines and regulations
defined by the European and Italian legislations (Directive 2010/63/EU and DLGS
26/2014, respectively). They apply to foetal forms of mammals as from the last
third of their normal development (from day 14 of gestation in the mouse). They
do not cover experiments done with day 12 mouse embryos and at earlier stages.
Therefore, no experimental protocol or license was necessary for the experiments
performed on mouse embryos. Mice were bred and maintained at the EMBL Rome
Animal Facility in accordance with European and Italian legislations (EU Directive
634/2010 and DLGS 26/2014, respectively).

C1 Fluidigm chip and single-cell RNA sequencing. AGM from E10 embryos were
dissected and dissociated with collagenase (Sigma) at 37 °C for 30 min. The col-
lagenase was deactivated with PBS supplemented with 10% FBS (Gibco). Cells were
stained with anti-VE-Cad and anti-CD41 antibodies (Supplementary Table 3). VE-
Cad+ cells from E10 embryos were isolated using FACS and mixed with Fluidigm
suspension reagent (Fluidigm) in a 3:2 ratio. A primed Fluidigm C1 chip and 5 μl
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Fig. 10 New model for the progression of EHT. Scheme summarising the findings of the present study. We identified two different sets of endothelial cell
populations in the AGM with very distinct properties in term of signalling pathways and metabolic states. Expression of Runx1 in the CD44+ arterial
endothelial population triggers the upregulation of haematopoietic genes and the formation of the Pre-HSPC-I, which co-expresses endothelial and
haematopoietic genes. Continuous expression of haematopoietic genes and interaction between CD44 and hyaluronan eventually lead to the loss of
endothelial genes and the formation of Pre-HSPC-II expressing only haematopoietic genes.
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of cell suspension was loaded onto a C1 instrument. Cell capture was then assessed
with a ×40 bright-field microscope and wells scored as single cell, doublet or debris.
Lysis, reverse transcription and PCR reagents (Clontech Takara) along with ERCC
spike-ins at 1 in 4000 dilution (Ambion) were added and mRNA-Seq RT & Amp
script were performed overnight. The cDNA was then collected and diluted in
Fluidigm C1 DNA dilution buffer.

Single-cell RNA sequencing data analysis. The paired 2 ×101 bp Illumina reads
from the libraries were quantified using Salmon51 with the setting -l IU to indicate
library topology and the optional flags–posBias and –gcBias, to account for cov-
erage and amplification biases present in sc-RNA-seq protocols. As an index the
cDNA annotation of Ensembl release 85 for GRCm38.p4 was used, together with
ERCC spike-in sequences. The transcript per million (TPM) values were re-scaled
to not include ERCC expression and only consider endogenous gene expression.

Technical features of the data were compared with manual annotation of
samples in C1 chambers through microscopy. Samples with less than 500,000
mapped reads and >30% mitochondrial content were discarded from analysis. This
left 78 single cells in the in vivo experiment.

To identify cells as endothelial or haematopoietic, expression levels of ten
known markers were analysed (Cdh5, Kdr, Pecam1, Pcdh12, Sox7, Gfi1, Gfi1b, Myb,
Runx1, Spi1). Cells were clustered using Principal Component Analysis (PCA) and
a Gaussian Mixture Model with two components on these markers (Fig. 1b). A
cluster of ten cells considered haematopoietic was identified (and annotated based
on high Runx1 expression). Analysis was performed using the decomposition.PCA
and mixture.GaussianMixture classes in the scikit-learn package. PCA analysis was
performed on the log-transformed TPM values of the markers and the first two
principal components were used for Gaussian Mixture.

Markers for hematopoietic cells were identified using a likelihood ratio test,
where the alternative model included a binary term for whether the cell was
haematopoietic, and the null model just assumed a common mean for all the cells.
The P-values from the likelihood ratio test were corrected for multiple testing by
the Bonferroni procedure. The top differentially expressed genes were investigated
to find markers, which could be used in follow-up experiments, and Cd44 was
considered a good candidate (Fig. 1c).

Analysis of the mouse single-cell transcriptome atlases. Seurat v.2 was used to
perform sc-RNA-seq clustering analysis on the data retrieved from the Mouse
Organogenesis Cell Atlas27. We took the filtered data cds_cleaned.RDS from which
the doublet and low-mRNA cells were removed. For annotation and metadata, the
cell_annotation.csv table was used.

We selected the cells related to the Endothelial trajectory. For these files we
created Seurat object and ran clustering analysis including normalization with
LogNormalize method. Afterwards, we found 4890 variable genes using the
following parameters: x.low.cutoff= 0.0125, x.high.cutoff= 3, y.cutoff= 0.5. Next,
we performed a scaling with linear model regressed on the number of UMI and
clustering with dimensions 1:20 and resolution 1.0. With clustered data we
generated t-SNE plots highlighting the genes we were interested in (Supplementary
Fig. 10).

The Tabula Muris28 Gene-count tables for FACS sorted adult Aorta, Brain,
Diaphragm, Fat, Heart, Kidney, Limb, Liver, Lung, Mammary Gland, Pancreas and
Trachea cells were downloaded from Figshare: https://figshare.com/articles/Single-
cell_RNA-seq_data_from_Smart-seq2_sequencing_of_FACS_sorted_cells_v2_/
5829687.

The expression matrix was then processed through the CONCLUS pipeline52:
https://github.com/lancrinlab/CONCLUS. We then generated t-SNE plots
highlighting the expression pattern of Cdh5 and Cd44 genes (Supplementary
Fig. 11).

In vitro ES cell differentiation system. The A2lox Empty embryonic stem (ES)
cell line24 was maintained and differentiated as follows. ES cells were maintained
on mouse embryonic fibroblasts (MEFs) in KnockOut™ Dulbecco’s modified
Eagle’s medium (DMEM) medium (Gibco, 10829018) supplemented with 1%
Penicillin–Streptomycin (Gibco, 15070063), 1% L-glutamine (Gibco, 25030081), 1%
MEM non-essential amino acids solution (Gibco, 11140050), 15% FBS (Gibco,
10270106), 0.024 μg mL−1 of LIF (EMBL Protein expression and purification core
facility) and 0.12 mM of 2-Mercaptoethanol (Gibco). Cells were maintained on
MEFs and incubated at 37 °C with 5% CO2 and 95% relative humidity. TrypLE™
Express Enzyme (1×) (Gibco, 12605036) was used to detach cells for passaging,
collection or to create a single-cell suspension.

To begin differentiation into haemangioblast, the ESCs were passaged twice on
0.1% gelatin to remove MEFs first in DMEM-ES medium and then using IMDM-
ES medium containing IMDM (Iscove’s modified Dulbecco medium) (Lonza;
BE12-726F) supplemented with 1% Penicilliin–Streptomycin and 1% L-glutamine.
In addition, 15% FBS (Gibco, 10270106), 0.024 μg/mL LIF and 0.12 mM β-
mercaptoethanol were added. Once MEFs were removed, cells were collected and
cultured in untreated 10 cm2 petri dishes at a density of 0.3 × 106 cells per dish with
EB medium containing IMDM (supplemented with 1% Penicillin–Streptomycin
and 1% L-glutamine), 10% FBS (Gibco, 10270106), 0.6% Transferrin (Roche,
10652), 0.03% monothioglycerol (MTG) (Sigma, M6145) and 50 μg/mL ascorbic

acid (Sigma, A4544). After 3 days in culture, Flk1+ haemangioblast cells were
isolated through magnetic activated cell sorting24 using an anti-Flk1 APC
conjugated antibody (Supplementary Table 3) and anti-APC microbeads (Miltenyi
Biotec, 130-090-855).

For the haemangioblast differentiation, Flk1+ cells were cultured on gelatin for
24 to 72 h in IMDM medium supplemented with 1% Penicillin–Streptomycin, 1%
L-glutamine, 15% FBS (Gibco, 10270106), transferrin (Roche), MTG (Sigma) and
50 mg/μL of ascorbic acid (Sigma), 15% D4T24, 10 μg/mL VEGF (Preprotech, 500-
P131) and 10 μg/mL IL6 (Preprotech, 216-16). The cells could then be collected
with TrypLE express and cell populations analysed by flow cytometry using anti-
VE-Cad, anti-CD41 and anti-Kit antibodies (Supplementary Table 3). For in vitro
CD44–hyaluronan interaction experiments Flk1+ cells were plated on gelatin, as
per the haemangioblast differentiation protocol, and incubated with either 10 μg/
mL anti-CD44 antibody [KM201] (Supplementary Table 3), 300 μg/mL of
hyaluronidase (Sigma, H4272) and 500 μM of 4MU (Sigma, M1381-25G).
Generation of haematopoietic and endothelial populations was assessed by flow
cytometry after 48 h in culture.

Antibody screen, flow cytometry and cell sorting. The antibody screen was
performed using the Mouse Cell Surface Marker Screening Panel (BD Bioscience;
Supplementary Table 3) according to the manufacturer’s instructions. Cells from
haemangioblast culture and dissociated AGMs were stained with different com-
bination of antibodies (Supplementary Table 3). Dyes 7-AAD (Invitrogen, A1310)
or Sytox Blue (Invitrogen, S34857) were used to exclude dead cells. FACS analysis
was done using FACS Aria III (Becton Dickinson) and FACS Diva software. Data
were later analysed using FlowJo v10.1r5 (Tree Star, Inc.). For single-cell qPCR
analysis, cells were sorted using an 85 μm nozzle directly into the reaction buffer
(Cells Direct qRT-PCR Kit, Invitrogen) and were snap frozen. For OP9 co-
culturing assays, cells were sorted using 100 μm nozzle directly into a 96-well
culture dish (Costar).

Immunofluorescence and confocal microscopy. Mid-gestation embryos were
dissected and fixed in 4% paraformaldehyde for 15 min at room temperature then
incubated in 15% sucrose solution for 1 h before freezing in OCT (Tissue-Tek).
Ten-micrometer transverse cryo-sections of the AGM region were then placed on
superfrost plus slides (Thermo Scientific). Sections were washed in PBS, incubated
in 1M glycine solution and permeabilized with 0.3% Triton X-100 (Sigma).
Blocking solution consisting of 5% donkey serum, 5% goat serum and 0.1% Tween-
20 (Sigma) in tris-buffered saline (TBS) buffer was applied to sections for 2 h at
room temperature. Sections were incubated in primary antibodies overnight at 4 °C
and then washed. Secondary antibodies (Thermo Scientific; Supplementary
Table 3) were applied for 1 h at room temperature and were washed before 4′,6-
diamidino-2-phenylindole nuclear stain (Invitrogen) was applied for 15 min. Slides
were washed before being mounted with Prolong gold (Life Technologies) and
imaged on a Leica SP5 confocal microscope.

Single-cell q-RT-PCR. Single cells were sorted directly into lysis buffer and snap
frozen. Samples were reverse transcribed with superscript III reverse transcriptase
from the Cells Direct one-step qRT-PCR Kit (Invitrogen) for 15 min at 50 °C. The
cDNA was then pre-amplified for 20 cycles with 25 nM final concentration of each
outer primer for a set of 96 target genes (Supplementary Table 2). The cDNA was
then diluted with loading reagent (Fluidigm) and SoFastTM EvaGreen supermix
(Biorad), and were loaded onto a chip with inner primer mix. Amplification of the
target genes was measured with the Fluidigm Biomark HD system, with the Bio-
mark Data Collection software and the GE96 × 96+Meltv2.pcl programme.

Single-cell qPCR data analysis. Initial analysis of single-cell qPCR data were
performed using the Fluidigm Real Time PCR analysis software24. Hierarchical
clustering and PCA analysis were performed using the SINGuLAR analysis toolkit
(Fluidigm version 3.5) in R software (version 3.2.1).

Bulk RNA sequencing and data analysis. Bulk RNA-seq was performed as
described by the SmartSeq2 protocol53. Briefly, 25 cells from each group (Sup-
plementary Table 4) were FACS sorted directly into lysis buffer containing 0.2%
Triton X-100, oligo-dT primers and dNTP mix, and then snap frozen. Reverse
transcription was then performed, followed by pre-amplification for 14 cycles.
Nextera libraries were then prepared and sequenced on the Illumina Next Seq
sequencer.

Sequencing data were analysed with the aid of the EMBL Galaxy tools (galaxy.
embl.de)54—specifically FASTX for adaptor clipping, RNA STAR for mapping and
htseq-count for obtaining raw gene expression counts. The R software (version
3.3.1, http://www.R-project.org) was then used to generate heatmaps and tSNE
plots using the DESeq2, Scater, Biobase and pHeatmap packages.

Cell cycle analysis. To analyse the cell cycle status of AGM-derived cells, we used
the Click-iT plus EDU flow cytometry kit (Life Technologies; C10633). After
dissection, AGMs were incubated in 10 μM of EDU in PBS with 10% FBS for 1 h at
37 °C. The tissue was then washed and incubated in 1.25 mg/mL of collagenase for
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30 min. The sample was washed again and stained for cell surface markers (CD44,
VE-Cad and Kit; Supplementary Table 3). Approximately 1000 cells were sorted
based on cell surface expression into their different populations. Cells were then
washed in PBS with 1% bovine serum albumin and then fixed in paraformalde-
hyde. The cells were permeabilized with a saponin-based wash solution before the
addition of a copper protectant and AF488 picolyl azide for the detection of EDU.
Finally, the cell populations were stained with Hoechst 33342 (Invitrogen; R37605)
before re-analysis on the FACS Aria III, to determine the proportion of cells from
each population in G0/G1, S and G2 phases.

OP9 co-culturing assays. OP9 cells (ATCC, CRL-2749) were maintained in
MEM-alpha medium (Gibco, 12561056) with 20% FBS (ATCC, 30-2020). For
limiting dilution, co-cultures cells were sorted directly onto a confluent
OP9 stromal layer and incubated in medium conducive to haematopoietic devel-
opment, IMDM (Lonza) treated with 5% penicillin–streptomycin (Gibco) and
supplemented with 10% FBS (Gibco, 10270106), L-glutamine, transferrin, MTG,
ascorbic acid, LIF, 50 ng/mL SCF (Preprotech, 250-03), 25 ng/mL IL3 (Preprotech,
213-13), 5 ng/mL IL11 (Preprotech, 220-11), 10 ng/mL IL6 (Peprotech), 10 ng/mL
Oncostatin M (R&D Systems, 495-MO-025), 1 ng/mL bFGF (R&D Systems, 233-
FB-025). Round cell colonies were quantified after 3–6 days in culture. For ex vivo
CD44 blocking antibody experiments, 20 VE-Cad+CD44High cells were sorted as
per OP9 co-culturing assays, into a medium containing either no antibody, or 5 or
10 μg/mL of anti-CD44 antibody [KM201] (Supplementary Table 3). The number
of colonies was assessed after 3–6 days in culture.

Haematopoietic colony-forming assay. One hundred cells were initially sorted
onto a confluent OP9 stromal layer as per OP9 co-culturing assay. After 3 days in
culture, cells were collected with TrypLE express (Gibco) and CFU-culture assays
were initiated using Methocult complete medium (Stem Cell Technologies). Cells
were grown in 35 mm culture dishes and colonies quantified after 7 days.

Lymphocyte progenitor assay. Fifty cells were sorted onto confluent OP9 (ATCC,
CRL-2749) or OP9-DL155 stromal layers in MEM-alpha medium (Gibco) and
supplemented with growth factors conducive to lymphocyte development, 20% FBS
(ATCC, 30-2020), 50 ng/mL SCF (Peprotech), 5 ng/mL Flt-3L (Preprotech, 250-
31L) and 1 ng/mL IL7 (Preprotech, 217-17). Medium was changed every 4–5 days
and cells were split as necessary. Cells were cultured for 21 days before collecting,
with TrypLE express for flow cytometry analysis.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 2a, e, 4b, 6c, 8c, f, 9b, c, f and Supplementary Fig. 17 are
provided as a Source Data file.
All the expression data supporting the results reported in the article can be found in

Supplementary Data 1–8. In addition, the sc-RNA-seq raw data are accessible from the
ArrayExpress respository (E-MTAB-6987) and the bulk RNA-seq raw data were
deposited at the NCBI Gene Expression Omnibus (GSE128971).
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