1,143 research outputs found
Bounds on the basic physical parameters for anisotropic compact general relativistic objects
We derive upper and lower limits for the basic physical parameters
(mass-radius ratio, anisotropy, redshift and total energy) for arbitrary
anisotropic general relativistic matter distributions in the presence of a
cosmological constant. The values of these quantities are strongly dependent on
the value of the anisotropy parameter (the difference between the tangential
and radial pressure) at the surface of the star. In the presence of the
cosmological constant, a minimum mass configuration with given anisotropy does
exist. Anisotropic compact stellar type objects can be much more compact than
the isotropic ones, and their radii may be close to their corresponding
Schwarzschild radii. Upper bounds for the anisotropy parameter are also
obtained from the analysis of the curvature invariants. General restrictions
for the redshift and the total energy (including the gravitational
contribution) for anisotropic stars are obtained in terms of the anisotropy
parameter. Values of the surface redshift parameter greater than two could be
the main observational signature for anisotropic stellar type objects.Comment: 18 pages, no figures, accepted for publication in CQ
Response-theory for nonresonant hole burning: Stochastic dynamics
Using non-linear response theory the time signals relevant for nonresonant
spectral hole burning are calculated. The step-reponse function following the
application of a high amplitude ac field (pump) and an intermediate waiting
period is shown to be the sum of the equilibrium integrated response and a
modification due to the preparation via ac irradiation. Both components are
calculated for a class of stochastic dipole reorientation models. The results
indicate that the method can be used for a clearcut distinction of
homogeneously and heterogeneously broadened susceptibilities as they occur in
the relaxation of supercooled liquids or other disordered materials. This is
because only in the heterogeneous case is a frequency selective modification of
the response possible.Comment: revised version, 7 pages, 2 figure
Nonlinear response theory for Markov processes: Simple models for glassy relaxation
The theory of nonlinear response for Markov processes obeying a master
equation is formulated in terms of time-dependent perturbation theory for the
Green's functions and general expressions for the response functions up to
third order in the external field are given. The nonlinear response is
calculated for a model of dipole reorientations in an asymmetric double well
potential, a standard model in the field of dielectric spectroscopy. The static
nonlinear response is finite with the exception of a certain temperature
determined by the value of the asymmetry. In a narrow temperature range around
, the modulus of the frequency-dependent cubic response shows a peak at a
frequency on the order of the relaxation rate and it vanishes for both, low
frequencies and high frequencies. At temperatures at which the static response
is finite (lower and higher than ), the modulus is found to decay
monotonously from the static limit to zero at high frequencies. In addition,
results of calculations for a trap model with a Gaussian density of states are
presented. In this case, the cubic response depends on the specific dynamical
variable considered and also on the way the external field is coupled to the
kinetics of the model. In particular, a set of different dynamical variables is
considered that gives rise to identical shapes of the linear susceptibility and
only to different temperature dependencies of the relaxation times. It is found
that the frequency dependence of the nonlinear response functions, however,
strongly depends on the particular choice of the variables. The results are
discussed in the context of recent theoretical and experimental findings
regarding the nonlinear response of supercooled liquids and glasses.Comment: 23 pages, 10 figure
Origin of non-exponential relaxation in a crystalline ionic conductor: a multi-dimensional 109Ag NMR study
The origin of the non-exponential relaxation of silver ions in the
crystalline ion conductor Ag7P3S11 is analyzed by comparing appropriate
two-time and three-time 109Ag NMR correlation functions. The non-exponentiality
is due to a rate distribution, i.e., dynamic heterogeneities, rather than to an
intrinsic non-exponentiality. Thus, the data give no evidence for the relevance
of correlated back-and-forth jumps on the timescale of the silver relaxation.Comment: 4 pages, 3 figure
Nuclear magnetic resonance measurements reveal the origin of the Debye process in monohydroxy alcohols
Monohydroxy alcohols show a structural relaxation and at longer time scales a
Debye-type dielectric peak. From spin-lattice relaxation experiments using
different nuclear probes an intermediate, slower-than-structural dynamics is
identified for n-butanol. Based on these findings and on diffusion
measurements, a model of self-restructuring, transient chains is proposed. The
model is demonstrated to explain consistently the so far puzzling observations
made for this class of hydrogen-bonded glass forming liquids.Comment: 4 pages, 4 figure
Thermodynamic phase diagram and phase competition in BaFe2(As1-xPx)2 studied by thermal expansion
High-resolution thermal-expansion and specific-heat measurements were
performed on single crystalline BaFe2(As1-xPx)2 (0 < x < 0.33, x = 1). The
observation of clear anomalies allows to establish the thermodynamic phase
diagram which features a small coexistence region of SDW and superconductivity
with a steep rise of Tc on the underdoped side. Samples that undergo the
tetragonal-orthorhombic structural transition are detwinned in situ, and the
response of the sample length to the magneto-structural and superconducting
transitions is studied for all three crystallographic directions. It is shown
that a reduction of the magnetic order by superconductivity is reflected in all
lattice parameters. On the overdoped side, superconductivity affects the
lattice parameters in much the same way as the SDW on the underdoped side,
suggesting an intimate relation between the two types of order. Moreover, the
uniaxial pressure derivatives of Tc are calculated using the Ehrenfest relation
and are found to be large and anisotropic. A correspondence between
substitution and uniaxial pressure is established, i.e., uniaxial pressure
along the b-axis (c-axis) corresponds to a decrease (increase) of the P
content. By studying the electronic contribution to the thermal expansion we
find evidence for a maximum of the electronic density of states at optimal
doping
Reply to ``Comment on `Hole-burning experiments within glassy models with infinite range interactions' ''
This is a reply to the comments by Richter and Chamberlin, and Diezemann and
Bohmer to our paper (Phys. Rev. Lett. 85, 3448 (2000)). As further evidence for
the claims in this Letter, we here reproduce the nonlinear spectral
hole-burning experimental protocol in an equilibrated fully connected
spin-glass model and we exhibit frequency selectivity, together with a shift in
the base of the spectral hole.Comment: 1 page, two figures, to appear in Phys. Rev. Let
- …