887 research outputs found

    Ion and polymer dynamics in polymer electrolytes PPO-LiClO4: II. 2H and 7Li NMR stimulated-echo experiment

    Full text link
    We use 2H NMR stimulated-echo spectroscopy to measure two-time correlation functions characterizing the polymer segmental motion in polymer electrolytes PPO-LiClO4 near the glass transition temperature Tg. To investigate effects of the salt on the polymer dynamics, we compare results for different ether oxygen to lithium ratios, namely, 6:1, 15:1, 30:1 and infinity. For all compositions, we find nonexponential correlation functions, which can be described by a Kohlrausch function. The mean correlation times show quantitatively that an increase of the salt concentration results in a strong slowing down of the segmental motion. Consistently, for the high 6:1 salt concentration, a high apparent activation energy E_a=4.1eV characterizes the temperature dependence of the mean correlation times at Tg < T< 1.1T_g, while smaller values E_a=2.5eV are observed for moderate salt contents. The correlation functions are most nonexponential for 15:1 PPO-LiClO4, whereas the stretching is reduced for higher and lower salt concentrations. A similar dependence of the correlation functions on the evolution time in the presence and in the absence of ions indicates that addition of salt hardly affects the reorientational mechanism. For all compositions, mean jump angles of about 15 degree characterize the segmental reorientation. In addition, comparison of results from 2H and 7Li NMR stimulated-echo experiments suggests a coupling of ion and polymer dynamics in 15:1 PPO-LiClO4.Comment: 14 pages, 12 figure

    Reply to ``Comment on `Hole-burning experiments within glassy models with infinite range interactions' ''

    Full text link
    This is a reply to the comments by Richter and Chamberlin, and Diezemann and Bohmer to our paper (Phys. Rev. Lett. 85, 3448 (2000)). As further evidence for the claims in this Letter, we here reproduce the nonlinear spectral hole-burning experimental protocol in an equilibrated fully connected spin-glass model and we exhibit frequency selectivity, together with a shift in the base of the spectral hole.Comment: 1 page, two figures, to appear in Phys. Rev. Let

    Solidity of Viscous Liquids

    Full text link
    Recent NMR experiments on supercooled toluene and glycerol by Hinze and Bohmer show that small rotation angles dominate with only few large molecular rotations. These results are here interpreted by assuming that viscous liquids are solid-like on short length scales. A characteristic length, the "solidity length", separates solid-like behavior from liquid-like behavior.Comment: Plain RevTex file, no figure

    Inflating wormholes in the braneworld models

    Full text link
    The braneworld model, in which our Universe is a three-brane embedded in a five-dimensional bulk, allows the existence of wormholes, without any violation of the energy conditions. A fundamental ingredient of traversable wormholes is the violation of the null energy condition (NEC). However, in the brane world models, the stress energy tensor confined on the brane, threading the wormhole, satisfies the NEC. In conventional general relativity, wormholes existing before inflation can be significantly enlarged by the expanding spacetime. We investigate the evolution of an inflating wormhole in the brane world scenario, in which the wormhole is supported by the nonlocal brane world effects. As a first step in our study we consider the possibility of embedding a four-dimensional brane world wormhole into a five dimensional bulk. The conditions for the embedding are obtained by studying the junction conditions for the wormhole geometry, as well as the full set of the five dimensional bulk field equations. For the description of the inflation we adopt the chaotic inflation model. We study the dynamics of the brane world wormholes during the exponential inflation stage, and in the stage of the oscillating scalar field. A particular exact solution corresponding to a zero redshift wormhole is also obtained. The resulting evolution shows that while the physical and geometrical parameters of a zero redshift wormhole decay naturally, a wormhole satisfying some very general initial conditions could turn into a black hole, and exist forever.Comment: 30 pages, no figures, accepted for publication in CQ

    Wormhole geometries with conformal motions

    Full text link
    Exact solutions of traversable wormholes were recently found under the assumption of spherical symmetry and the existence of a non-static conformal symmetry. In this paper, we verify that in the case of the conformally symmetric spacetimes with a non-static vector field generating the symmetry, the conformal factor ψ\psi can be physically interpreted in terms of a measurable quantity, namely, the tangential velocity of a massive test particle moving in a stable circular orbit in the spacetime. Physical properties of the rotational velocity of test particles and of the redshift of radiation emitted by ultra-relativistic particles rotating around these hypothetical general relativistic objects are further discussed. Finally, specific characteristics and properties of gravitational bremsstrahlung emitted by charged particles in geodesic motion in conformally symmetric wormhole geometries are also explored.Comment: 7 pages. V2: clarifying comments added, to appear in Classical and Quantum Gravit

    Broadband Dielectric Spectroscopy on Glass-Forming Propylene Carbonate

    Full text link
    Dielectric spectroscopy covering more than 18 decades of frequency has been performed on propylene carbonate in its liquid and supercooled-liquid state. Using quasi-optic submillimeter and far-infrared spectroscopy the dielectric response was investigated up to frequencies well into the microscopic regime. We discuss the alpha-process whose characteristic timescale is observed over 14 decades of frequency and the excess wing showing up at frequencies some three decades above the peak frequency. Special attention is given to the high-frequency response of the dielectric loss in the crossover regime between alpha-peak and boson-peak. Similar to our previous results in other glass forming materials we find evidence for additional processes in the crossover regime. However, significant differences concerning the spectral form at high frequencies are found. We compare our results to the susceptibilities obtained from light scattering and to the predictions of various models of the glass transition.Comment: 13 pages, 9 figures, submitted to Phys. Rev.
    corecore