21 research outputs found

    Experimental investigation towards a periodically pumped single-photon source

    Get PDF
    Experiments towards a periodically pumped single-photon source are presented. The lateral piezoelectric field of a surface acoustic wave dissociates laser-generated two-dimensional excitons into electrons and holes. These carriers are separated by the wave potential and are transported over macroscopic length scales without recombining. When reaching a stress-induced quantum dot in the quantum well they periodically populate the zero-dimensional states and recombine, emitting single photons periodically in time according to the surface acoustic-wave frequency. We have successfully reduced the number of pumped quantum dots down to 100 and have detected a strong blinking photoluminescence signal. By further reducing the number of quantum dots down to 1 a periodically pumped single photon source could be realized.Peer reviewe

    Atom holography

    Full text link
    We study the conditions under which atomic condensates can be used as a recording media and then suggest a reading scheme which allows to reconstruct an object with atomic reading beam. We show that good recording can be achieved for flat condensate profiles and for negative detunings between atomic Bohr frequency and optical field frequency. The resolution of recording dramatically depends on the relation between the healing length of the condensate and the spatial frequency contents of the optical fields involved.Comment: 8 pages, 5 figures, Late

    Dynamic Acoustic Control of Individual Optically Active Quantum Dot-like Emission Centers in Heterostructure Nanowires

    Get PDF
    We probe and control the optical properties of emission centers forming in radial het- erostructure GaAs-Al0.3Ga0.7As nanowires and show that these emitters, located in Al0.3Ga0.7As layers, can exhibit quantum-dot like characteristics. We employ a radio frequency surface acoustic wave to dynamically control their emission energy and occupancy state on a nanosec- ond timescale. In the spectral oscillations we identify unambiguous signatures arising from both the mechanical and electrical component of the surface acoustic wave. In addition, differ- ent emission lines of a single quantum dot exhibit pronounced anti-correlated intensity oscilla- tions during the acoustic cycle. These arise from a dynamically triggered carrier extraction out of the quantum dot to a continuum in the radial heterostructure. Using finite element modeling and Wentzel-Kramers-Brillouin theory we identify quantum tunneling as the underlying mech- anism. These simulation results quantitatively reproduce the observed switching and show that in our systems these quantum dots are spatially separated from the continuum by > 10.5 nm.Comment: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Nano Letters, copyright \c{copyright} American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/nl404043

    Transformatoren

    No full text
    corecore