21 research outputs found
Experimental investigation towards a periodically pumped single-photon source
Experiments towards a periodically pumped single-photon source are presented. The lateral piezoelectric field of a surface acoustic wave dissociates laser-generated two-dimensional excitons into electrons and holes. These carriers are separated by the wave potential and are transported over macroscopic length scales without recombining. When reaching a stress-induced quantum dot in the quantum well they periodically populate the zero-dimensional states and recombine, emitting single photons periodically in time according to the surface acoustic-wave frequency. We have successfully reduced the number of pumped quantum dots down to 100 and have detected a strong blinking photoluminescence signal. By further reducing the number of quantum dots down to 1 a periodically pumped single photon source could be realized.Peer reviewe
Atom holography
We study the conditions under which atomic condensates can be used as a
recording media and then suggest a reading scheme which allows to reconstruct
an object with atomic reading beam. We show that good recording can be achieved
for flat condensate profiles and for negative detunings between atomic Bohr
frequency and optical field frequency. The resolution of recording dramatically
depends on the relation between the healing length of the condensate and the
spatial frequency contents of the optical fields involved.Comment: 8 pages, 5 figures, Late
Dynamic Acoustic Control of Individual Optically Active Quantum Dot-like Emission Centers in Heterostructure Nanowires
We probe and control the optical properties of emission centers forming in
radial het- erostructure GaAs-Al0.3Ga0.7As nanowires and show that these
emitters, located in Al0.3Ga0.7As layers, can exhibit quantum-dot like
characteristics. We employ a radio frequency surface acoustic wave to
dynamically control their emission energy and occupancy state on a nanosec- ond
timescale. In the spectral oscillations we identify unambiguous signatures
arising from both the mechanical and electrical component of the surface
acoustic wave. In addition, differ- ent emission lines of a single quantum dot
exhibit pronounced anti-correlated intensity oscilla- tions during the acoustic
cycle. These arise from a dynamically triggered carrier extraction out of the
quantum dot to a continuum in the radial heterostructure. Using finite element
modeling and Wentzel-Kramers-Brillouin theory we identify quantum tunneling as
the underlying mech- anism. These simulation results quantitatively reproduce
the observed switching and show that in our systems these quantum dots are
spatially separated from the continuum by > 10.5 nm.Comment: This document is the unedited Author's version of a Submitted Work
that was subsequently accepted for publication in Nano Letters, copyright
\c{copyright} American Chemical Society after peer review. To access the
final edited and published work see
http://pubs.acs.org/doi/abs/10.1021/nl404043
Unbound states in quantum heterostructures
We report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum Dots is also discussed