10 research outputs found

    Chemical Abundances Of Open Clusters From High-Resolution Infrared Spectra. I. NGC 6940

    Full text link
    We present near-infrared spectroscopic analysis of 12 red giant members of the Galactic open cluster NGC 6940. High-resolution (R≃\simeq45000) and high signal-to-noise ratio (S/N > 100) near-infrared H and K band spectra were gathered with the Immersion Grating Infrared Spectrograph (IGRINS) on the 2.7m Smith Telescope at McDonald Observatory. We obtained abundances of H-burning (C, N, O), α{\alpha} (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Fe, Co, Ni) and neutron-capture (Ce, Nd, Yb) elements. We report the abundances of S, P, K, Ce, and Yb in NGC 6940 for the first time. Many OH and CN features in the H band were used to obtain O and N abundances. C abundances were measured from four different features: CO molecular lines in the K band, high excitation C I lines present in both near-infrared and optical, CH and C2C_2 bands in the optical region. We have also determined 12C/13C^{12}C/^{13}C ratios from the R-branch band heads of first overtone (2-0) and (3-1) 12CO^{12}CO (2-0) 13CO^{13}CO lines near 23440 \overset{\lower.5em\circ}{\mathrm{A}} and (3-1) 13CO^{13}CO lines at about 23730 \overset{\lower.5em\circ}{\mathrm{A}}. We have also investigated the HF feature at 23358.3 \overset{\lower.5em\circ}{\mathrm{A}}, finding solar fluorine abundances without ruling out a slight enhancement. For some elements (such as the α{\alpha} group), IGRINS data yield more internally self-consistent abundances. We also revisited the CMD of NGC 6940 by determining the most probable cluster members using Gaia DR2. Finally, we applied Victoria isochrones and MESA models in order to refine our estimates of the evolutionary stages of our targets.Comment: 16 pages, 10 figure

    Chemical abundances of open clusters from high-resolution infrared spectra-I. NGC 6940

    No full text
    We present near-infrared spectroscopic analysis of 12 red giant members of the Galactic open cluster NGC 6940. High-resolution (R ~ 45 000) and high-signal-to-noise ratio (S/N > 100) near-infrared H- A nd K-band spectra were gathered with the Immersion Grating Infrared Spectrograph (IGRINS) on the 2.7-m Smith Telescope at McDonald Observatory.We obtained abundances of H-burning (C, N, O), ? (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Fe, Co, Ni), and neutron-capture (Ce, Nd, Yb) elements.We report the abundances of S, P, K, Ce, and Yb in NGC 6940 for the first time. Many OH and CN features in the H band were used to obtain O and N abundances. C abundances were measured from four different features: CO molecular lines in the K band, high excitation CI lines present in both near-infrared and optical, CH and C2 bands in the optical region. We have also determined 12C/13C ratios from the R-branch band heads of first overtone (2.0) and (3.1) 12COand (2.0) 13CO lines near 23 440 A and (3.1) 13CO lines at about 23 730 A. We have also investigated the HF feature at 23 358.3 A, finding solar fluorine abundances without ruling out a slight enhancement. For some elements (such as the ? group), IGRINS data yield more internally self-consistent abundances.We also revisited the CMD of NGC 6940 by determining the most probable cluster members using Gaia DR2. Finally, we applied Victoria isochrones and MESA models in order to refine our estimates of the evolutionary stages of our targets. © 2019 The Author(s).Korea Astronomy and Space Science Institute: AST-1229522 European Space Agency University of Texas at Austin National Science Foundation: AST 16-16040 Texas A and M University-Central Texas 116F407We thank the anonymous referee for her/his comments and suggestions that improved the quality of the paper. We thank Karin Lind and Henrique Reggiani for helpful discussions on this work. Our work has been supported by The Scientific and Technological Research Council of Turkey (TÜB'TAK, project No. 116F407), by the US National Science Foundation (NSF, grant AST 16-16040), and by the University of Texas Rex G. Baker, Jr. Centennial Research Endowment. This work used the Immersion Grating Infrared Spectrometer (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation under grant AST-1229522, of the University of Texas at Austin, and of the Korean GMT Project of KASI. This work has made use of data from the European Space Agency (ESA) mission Gaia (https: //www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web /gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This research has made use of NASA’s Astrophysics Data System Bibliographic Services; the SIMBAD database and the VizieR service, both operated at CDS, Strasbourg, France. This research has made use of the WEBDA database, operated at the Department of Theoretical Physics and Astrophysics of the Masaryk University, and the VALD database, operated at Uppsala University, the Institute of Astronomy RAS in Moscow, and the University of Vienna. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin. -

    Chemical abundances of open clusters from high-resolution infrared spectra - II. NGC 752

    No full text
    We present a detailed near-infrared chemical abundance analysis of 10 red giant members of the Galactic open cluster NGC 752. High-resolution (R ≃ 45000) near-infrared spectral data were gathered with the Immersion Grating Infrared Spectrograph, providing simultaneous coverage of the complete H and K bands. We derived the abundances of H-burning (C, N, O), αα (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Fe, Co, Ni), and neutron-capture (Ce, Nd, Yb) elements. We report the abundances of S, P, K, Ce, and Yb in NGC 752 for the first time. Our analysis yields solar-metallicity and solar abundance ratios for almost all of the elements heavier than the CNO group in NGC 752. O and N abundances were measured from a number of OH and CN features in the H band, and C abundances were determined mainly from CO molecular lines in the K band. High-excitation CI lines present in both near-infrared and optical spectra were also included in the C abundance determinations. Carbon isotopic ratios were derived from the R-branch band heads of first overtone (2−0) and (3−1) 12^{12}CO and (2−0) 13^{13}CO lines near 23 440 Å and (3−1) 13^{13}CO lines at about 23 730 Å. The CNO abundances and 12^{12}C/13^{13}C ratios are all consistent with our giants having completed ‘first dredge-up’ envelope mixing of CN-cyle products. We independently assessed NGC 752 stellar membership from Gaia astrometry, leading to a new colour–magnitude diagram for this cluster. Applications of Victoria isochrones and MESA models to these data yield an updated NGC 752 cluster age (1.52 Gyr) and evolutionary stage indications for the programme stars. The photometric evidence and spectroscopic light element abundances all suggest that the most, perhaps all of the programme stars are members of the helium-burning red clump in this cluster

    What is a globular cluster? An observational perspective

    No full text
    corecore