37 research outputs found

    Dicer1 Depletion in Male Germ Cells Leads to Infertility Due to Cumulative Meiotic and Spermiogenic Defects

    Get PDF
    Background: Spermatogenesis is a complex biological process that requires a highly specialized control of gene expression. In the past decade, small non-coding RNAs have emerged as critical regulators of gene expression both at the transcriptional and post-transcriptional level. DICER1, an RNAse III endonuclease, is essential for the biogenesis of several classes of small RNAs, including microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), but is also critical for the degradation of toxic transposable elements. In this study, we investigated to which extent DICER1 is required for germ cell development and the progress of spermatogenesis in mice.Principal Findings: We show that the selective ablation of Dicer1 at the early onset of male germ cell development leads to infertility, due to multiple cumulative defects at the meiotic and post-meiotic stages culminating with the absence of functional spermatozoa. Alterations were observed in the first spermatogenic wave and include delayed progression of spermatocytes to prophase I and increased apoptosis, resulting in a reduced number of round spermatids. The transition from round to mature spermatozoa was also severely affected, since the few spermatozoa formed in mutant animals were immobile and misshapen, exhibiting morphological defects of the head and flagellum. We also found evidence that the expression of transposable elements of the SINE family is up-regulated in Dicer1-depleted spermatocytes.Conclusions/Significance: Our findings indicate that DICER1 is dispensable for spermatogonial stem cell renewal and mitotic proliferation, but is required for germ cell differentiation through the meiotic and haploid phases of spermatogenesis

    The A985G mutation in the medium-chain acyl-CoA dehydrogenase gene: high prevalence in the Swiss population resident in Geneva

    No full text
    We have determined the frequency of the A985G mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene in a cohort of 1142 healthy babies born in two Geneva hospitals. Among babies with at least one Swiss parent, heterozygotes were detected at a frequency of 1/52, with a 95% confidence range from 1/82 to 1/38. The high frequency of the carrier state for this mutation suggests that MCAD-deficient babies are born with a frequency of 1/10,000 in the Swiss population. This number is in sharp contrast with the low number of symptomatic MCAD-deficient patients diagnosed in this country. Thus, the fraction of homozygotes who remain asymptomatic is likely to be very high in the Swiss population, and possibly higher than in other countries of northern Europe

    Detection of polymorphisms in the human urokinase-type plasminogen activator gene

    No full text
    Expressed polymorphisms in the genes encoding components of the fibrinolytic cascade could have implications for the predisposition to thrombolytic disorders and/or for tumor metastasis. The occurrence of published two amino acid sequences at position 194 of the human urokinase-type plasminogen activator prompted us to search by SSCP for frequent polymorphisms in several exons of the gene. Surprisingly, only one sequence was detected in codon 194 (> 200 alleles). Two polymorphisms were observed in this study: the most frequent one, a C to T change near the beginning of exon 8, is probably silent; a less frequent polymorphism results in the replacement of a Leu residue by a Pro, in the kringle domain

    Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human

    No full text
    Spermatogenesis defects concern millions of men worldwide, yet the vast majority remains undiagnosed. Here we report men with primary infertility due to multiple morphological abnormalities of the sperm flagella with severe disorganization of the sperm axoneme, a microtubule-based structure highly conserved throughout evolution. Whole-exome sequencing was performed on 78 patients allowing the identification of 22 men with bi-allelic mutations in DNAH1 (n = 6), CFAP43 (n = 10), and CFAP44 (n = 6). CRISPR/Cas9 created homozygous CFAP43/44 male mice that were infertile and presented severe flagellar defects confirming the human genetic results. Immunoelectron and stimulated-emission-depletion microscopy performed on CFAP43 and CFAP44 orthologs in Trypanosoma brucei evidenced that both proteins are located between the doublet microtubules 5 and 6 and the paraflagellar rod. Overall, we demonstrate that CFAP43 and CFAP44 have a similar structure with a unique axonemal localization and are necessary to produce functional flagella in species ranging from Trypanosoma to human

    In vivo antisense oligodeoxynucleotide mapping reveals masked regulatory elements in an mRNA dormant in mouse oocytes

    No full text
    In mouse oocytes, tissue-type plasminogen activator (tPA) mRNA is under translational control. The newly transcribed mRNA undergoes deadenylation and translational silencing in growing oocytes, while readenylation and translation occur during meiotic maturation. To localize regulatory elements controlling tPA mRNA expression, we identified regions of the endogenous transcript protected from hybridization with injected antisense oligodeoxynucleotides. Most of the targeted sequences in either the 5' untranslated region (5'UTR), coding region, or 3'UTR were accessible to hybridization, as revealed by inhibition of tPA synthesis and by RNase protection. Two protected regions were identified in the 3'UTR of tPA mRNA in primary oocytes: the adenylation control element (ACE) and the AAUAAA polyadenylation signal. These sequences were previously shown to be involved in the translational control of injected reporter transcripts. During the first hour of meiotic maturation, part of the ACE and the AAUAAA hexanucleotide became accessible to hybridization, suggesting a partial unmasking of the 3'UTR of this mRNA before it becomes translationally competent. Our results demonstrate that in vivo antisense oligodeoxynucleotide mapping can reveal the dynamics of regulatory features of a native mRNA in the context of the intact cell. They suggest that specific regions in the 3'UTR of tPA mRNA function as cis-acting masking determinants involved in the silencing of tPA mRNA in primary oocytes

    Intracellular Ca2+ and the regulation of early response gene expression in HL-60 myeloid leukemia cells

    No full text
    To gain direct insight into the action of the second messenger Ca2+ on transcriptional regulation, we have developed an intact cell model in which the intracellular free Ca2+ concentration ([Ca2+]i) can be measured, set, and varied at any level within the physiological range and in which the expression of early response genes is assayed in parallel. Using promyelocytic HL-60 cells, we have observed an exquisite sensitivity to Ca2+ of c-fos, c-jun, and zif268 mRNA accumulation, since early and maximal inductions were observed at 200-300 nM [Ca2+]i. At early times (10-20 min), the [Ca2+]i dose dependence of c-fos transcription and mRNA accumulation displayed a bell shape since c-fos expression was barely modified at high (700-1,250 nM) [Ca2+]i. The threshold [Ca2+]i concentration for prolonged (60 min) c-fos mRNA accumulation was greater than 200 nM. This indicates that the quantitative effects of Ca2+ on a given gene can vary markedly as a function of both the [Ca2+]i concentration and the duration of stimulation. Strikingly, a [Ca2+]i perturbation of only 1 min was sufficient for full induction of c-fos and zif268 transcripts. This demonstrates that a transient perturbation of [Ca2+]i has long term effects on gene expression. The half-life of c-fos mRNA (16 min) was unaltered by Ca2+. Nuclear run-on analysis of the distribution of RNA polymerase II along the c-fos locus indicated that Ca2+ promotes a small increase in transcriptional initiation and a pronounced relief of a block to transcriptional elongation beyond intron 1. The extreme sensitivity to [Ca2+]i, in terms of both the length of time and the dose of [Ca2+]i required for maximal gene induction, demonstrates that Ca2+ is a major physiological regulator of early response gene expression. In addition, the results indicate that a c-fos intragenic element is the main target of Ca(2+)-regulated transcriptional activation

    Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes

    No full text
    The mechanisms responsible for translational silencing of certain mRNAs in growing oocytes, and for their awakening during meiotic maturation, are not completely elucidated. We show that binding of a approximately 80-kD protein to a UA-rich element in the 3' UTR of tissue-type plasminogen activator mRNA, a mouse oocyte mRNA that is translated during meiotic maturation, silences the mRNA in primary oocytes. Translation can be triggered by injecting a competitor transcript that displaces this silencing factor, without elongation of a pre-existing short poly(A) tail, the presence of which is mandatory. During meiotic maturation, cytoplasmic polyadenylation is necessary to maintain a poly(A) tail, but the determining event for translational activation appears to be the modification or displacement of the silencing factor

    Deciphering the origins and fates of steroidogenic lineages in the mouse testis

    No full text
    Leydig cells (LCs) are the major androgen-producing cells in the testis. They arise from steroidogenic progenitors (SPs), whose origins, maintenance, and differentiation dynamics remain largely unknown. Single-cell transcriptomics reveal that the mouse steroidogenic lineage is specified as early as embryonic day 12.5 (E12.5) and has a dual mesonephric and coelomic origin. SPs specifically express the Wnt5a gene and evolve rapidly. At E12.5 and E13.5, they give rise first to an intermediate population of pre-LCs, and finally to fetal LCs. At E16.5, SPs possess the characteristics of the dormant progenitors at the origin of adult LCs and are also transcriptionally closely related to peritubular myoid cells (PMCs). In agreement with our in silico analysis, in vivo lineage tracing indicates that Wnt5a-expressing cells are bona fide progenitors of PMCs as well as fetal and adult LCs, contributing to most of the LCs present in the fetal and adult testis

    Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for human male infertility, interest, difficulties and feasibility

    No full text
    High throughput sequencing (HTS) and CRISPR/Cas9 are two recent technologies that are currently revolutionizing biological and clinical research. Both techniques are complementary as HTS permits to identify new genetic variants and genes involved in various pathologies and CRISPR/Cas9 permits to create animals or cell models to validate the effect of the identified variants, to characterize the pathogeny of the identified variants and the function of the genes of interest and ultimately to provide ways of correcting the molecular defects. We analyzed a cohort of 78 infertile men presenting with multiple morphological anomalies of the sperm flagella (MMAF), a severe form of male infertility. Using whole exome sequencing (WES), homozygous mutations in autosomal candidate genes were identified in 63% of the tested subjects. We decided to produce by CRISPR/cas9 four knock-out (KO) and one knock-in (KI) mouse lines to confirm these results and to increase our understanding of the physiopathology associated with these genetic variations. Overall 31% of the live pups obtained presented a mutational event in one of the targeted regions. All identified events were insertions or deletions localized near the PAM sequence. Surprisingly we observed a high rate of germline mosaicism as 30% of the F1 displayed a different mutation than the parental event characterized on somatic tissue (tail), indicating that CRISPR/Cas9 mutational events kept happening several cell divisions after the injection. Overall, we created mouse models for 5 distinct loci and in each case homozygous animals could be obtained in approximately 6 months. These results demonstrate that the combined use of WES and CRISPR/Cas9 is an efficient and timely strategy to identify and validate mutations responsible for infertility phenotypes in human

    The Glucocorticoid-induced leucine zipper (GILZ) Is essential for spermatogonial survival and spermatogenesis

    No full text
    Spermatogenesis relies on the precise regulation of the self-renewal and differentiation of spermatogonia to provide a continuous supply of differentiating germ cells. The understanding of the cellular pathways regulating this equilibrium remains unfortunately incomplete. This investigation aimed to elucidate the testicular and ovarian functions of the glucocorticoid-induced leucine zipper protein (GILZ) encoded by the X-linked Tsc22d3 (Gilz) gene. We found that GILZ is specifically expressed in the cytoplasm of proliferating spermatogonia and preleptotene spermatocytes. While Gilz mutant female mice were fully fertile, constitutive or male germ cell-specific ablation of Gilz led to sterility due to a complete absence of post-meiotic germ cells and mature spermatozoa. Alterations were observed as early as postnatal day 5 during the first spermatogenic wave and included extensive apoptosis at the spermatogonial level and meiotic arrest in the mid-late zygotene stage. Overall, these data emphasize the essential role played by GILZ in mediating spermatogonial survival and spermatogenesis
    corecore