34 research outputs found

    The European Reference Network for Rare Neurological Diseases

    Get PDF
    European reference network; Rare neurological diseases; Virtual healthcareXarxa europea de referĂšncia; Malalties neurolĂČgiques rares; AssistĂšncia sanitĂ ria virtualRed europea de referencia; Enfermedades neurologicas raras; Asistencia sanitaria virtualWhile rare diseases (RDs) are by definition of low prevalence, the total number of patients suffering from an RD is high, and the majority of them have neurologic manifestations, involving central, peripheral nerve, and muscle. In 2017, 24 European Reference Networks (ERNs), each focusing on a specific group of rare or low-prevalence complex diseases, were formed to improve the care for patients with an RD. One major aim is to have “the knowledge travel instead of the patient,” which has been put into practice by the implementation of the Clinical Patient Management System (CPMS) that enables clinicians to perform pan-European virtual consultations. The European Reference Network for Rare Neurological Diseases (ERN-RND) provides an infrastructure for knowledge sharing and care coordination for patients affected by a rare neurological disease (RND) involving the most common central nervous system pathological conditions. It covers the following disease groups: (i) Cerebellar Ataxias and Hereditary Spastic Paraplegias; (ii) Huntington's disease and Other Choreas; (iii) Frontotemporal dementia; (iv) Dystonia, (non-epileptic) paroxysmal disorders, and Neurodegeneration with Brain Iron Accumulation; (v) Leukoencephalopathies; and (vi) Atypical Parkinsonian Syndromes. At the moment, it unites 32 expert centers and 10 affiliated partners in 21 European countries, as well as patient representatives, but will soon cover nearly all countries of the European Union as a result of the ongoing expansion process. Disease expert groups developed and consented on diagnostic flowcharts and disease scales to assess the different aspects of RNDs. ERN-RND has started to discuss diagnostically unclear patients in the CPMS, is one of four ERNs that serve as foundation of Solve-RD, and has established an RND training and education program. The network will facilitate trial readiness through the establishment of an ERN-RND registry with a minimal data of all patients seen at the ERN-RND centers, thus providing a unique overview of existing genotype-based cohorts. The overall aim of the ERNs is to improve access for patients with RDs to quality diagnosis, care, and treatment. Based on this objective, ERNs are monitored by the European Commission on a regular basis to provide transparency and reassurance to the RD community and the general public.This work is generated within the European Reference Network for Rare Neurological Diseases—Project ID No. 739510

    Complete patient exposure during paediatric brain cancer treatment for photon and proton therapy techniques including imaging procedures

    Get PDF
    BackgroundIn radiotherapy, especially when treating children, minimising exposure of healthy tissue can prevent the development of adverse outcomes, including second cancers. In this study we propose a validated Monte Carlo framework to evaluate the complete patient exposure during paediatric brain cancer treatment.Materials and methodsOrgan doses were calculated for treatment of a diffuse midline glioma (50.4 Gy with 1.8 Gy per fraction) on a 5-year-old anthropomorphic phantom with 3D-conformal radiotherapy, intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and intensity modulated pencil beam scanning (PBS) proton therapy. Doses from computed tomography (CT) for planning and on-board imaging for positioning (kV-cone beam CT and X-ray imaging) accounted for the estimate of the exposure of the patient including imaging therapeutic dose. For dose calculations we used validated Monte Carlo-based tools (PRIMO, TOPAS, PENELOPE), while lifetime attributable risk (LAR) was estimated from dose-response relationships for cancer induction, proposed by Schneider et al.ResultsOut-of-field organ dose equivalent data of proton therapy are lower, with doses between 0.6 mSv (testes) and 120 mSv (thyroid), when compared to photon therapy revealing the highest out-of-field doses for IMRT ranging between 43 mSv (testes) and 575 mSv (thyroid). Dose delivered by CT ranged between 0.01 mSv (testes) and 72 mSv (scapula) while a single imaging positioning ranged between 2 ΌSv (testes) and 1.3 mSv (thyroid) for CBCT and 0.03 ΌSv (testes) and 48 ΌSv (scapula) for X-ray. Adding imaging dose from CT and daily CBCT to the therapeutic demonstrated an important contribution of imaging to the overall radiation burden in the course of treatment, which is subsequently used to predict the LAR, for selected organs.ConclusionThe complete patient exposure during paediatric brain cancer treatment was estimated by combining the results from different Monte Carlo-based dosimetry tools, showing that proton therapy allows significant reduction of the out-of-field doses and secondary cancer risk in selected organs

    Complex dystonias: an update on diagnosis and care

    No full text
    Complex dystonias are defined as dystonias that are accompanied by neurologic or systemic manifestations beyond movement disorders. Many syndromes or diseases can present with complex dystonia, either as the cardinal sign or as part of a multi-systemic manifestation. Complex dystonia often gradually develops in the disease course, but can also be present from the outset. If available, the diagnostic workup, disease-specific treatment, and management of patients with complex dystonias require a multi-disciplinary approach. This article summarizes current knowledge on complex dystonias with a particular view of recent developments with respect to advances in diagnosis and management, including causative treatments

    Associative plasticity in supplementary motor area - motor cortex pathways in Tourette syndrome

    No full text
    The important role of the supplementary motor area (SMA) in the generation of tics and urges in Gilles de la Tourette syndrome (GTS) is underscored by an increased SMA-motor cortex (M1) connectivity. However, whether plasticity is also altered in SMA-M1 pathways is unclear. We explored whether SMA-M1 plasticity is altered in patients with Tourette syndrome. 15 patients with GTS (mean age of 33.4 years, SD = 9.9) and 19 age and sex matched healthy controls were investigated with a paired association stimulation (PAS) protocol using three transcranial magnetic stimulation (TMS) coils stimulating both M1 and the SMA. Standard clinical measures for GTS symptoms were collected. There was a significant PAS effect showing that MEP amplitudes measured in blocks during and after PAS were significantly higher compared to those in the first block. However, the degree of PAS was not differentially modulated between patients and controls as shown by a Bayesian data analysis. PAS effects in GTS correlated positively with the YGTSS motor tic severity. Plasticity previously reported to be altered in sensorimotor pathways in GTS is normal in SMA-M1 projections suggesting that the dysfunction of the SMA in GTS is not primarily related to altered plasticity in SMA-M1 connections

    Theta Activity Dynamics during Embedded Response Plan Processing in Tourette Syndrome

    No full text
    Gilles de la Tourette syndrome (GTS) is a neuropsychiatric disorder. Because motor signs are the defining feature of GTS, addressing the neurophysiology of motor processes is central to understanding GTS. The integration of voluntary motor processes is subject to so-called “binding problems”, i.e., how different aspects of an action are integrated. This was conceptualized in the theory of event coding, in which ‘action files’ accomplish the integration of motor features. We examined the functional neuroanatomical architecture of EEG theta band activity related to action file processing in GTS patients and healthy controls. Whereas, in keeping with previous data, behavioral performance during action file processing did not differ between GTS and controls, underlying patterns of neural activity were profoundly different. Superior parietal regions (BA7) were predominantly engaged in healthy controls, but superior frontal regions (BA9, BA10) in GTS indicated that the processing of different motor feature codes was central for action file processing in healthy controls, whereas episodic processing was more relevant in GTS. The data suggests a cascade of cognitive branching in fronto-polar areas followed by episodic processing in superior frontal regions in GTS. Patients with GTS accomplish the integration of motor plans via qualitatively different neurophysiological processes

    Theta Activity Dynamics during Embedded Response Plan Processing in Tourette Syndrome

    No full text
    Gilles de la Tourette syndrome (GTS) is a neuropsychiatric disorder. Because motor signs are the defining feature of GTS, addressing the neurophysiology of motor processes is central to understanding GTS. The integration of voluntary motor processes is subject to so-called “binding problems”, i.e., how different aspects of an action are integrated. This was conceptualized in the theory of event coding, in which ‘action files’ accomplish the integration of motor features. We examined the functional neuroanatomical architecture of EEG theta band activity related to action file processing in GTS patients and healthy controls. Whereas, in keeping with previous data, behavioral performance during action file processing did not differ between GTS and controls, underlying patterns of neural activity were profoundly different. Superior parietal regions (BA7) were predominantly engaged in healthy controls, but superior frontal regions (BA9, BA10) in GTS indicated that the processing of different motor feature codes was central for action file processing in healthy controls, whereas episodic processing was more relevant in GTS. The data suggests a cascade of cognitive branching in fronto-polar areas followed by episodic processing in superior frontal regions in GTS. Patients with GTS accomplish the integration of motor plans via qualitatively different neurophysiological processes

    Data_Sheet_1_Cerebellar transcranial current stimulation – An intraindividual comparison of different techniques.DOCX

    No full text
    Transcranial current stimulation (tCS) techniques have been shown to induce cortical plasticity. As an important relay in the motor system, the cerebellum is an interesting target for plasticity induction using tCS, aiming to modulate its excitability and connectivity. However, until now it remains unclear, which is the most effective tCS method for inducing plasticity in the cerebellum. Thus, in this study, the effects of anodal transcranial direct current stimulation (tDCS), 50 Hz transcranial alternating current stimulation (50 Hz tACS), and high frequency transcranial random noise stimulation (tRNS) were compared with sham stimulation in 20 healthy subjects in a within-subject design. tCS was applied targeting the cerebellar lobe VIIIA using neuronavigation. We measured corticospinal excitability, short-interval intracortical inhibition (SICI), short-latency afferent inhibition (SAI), and cerebellar brain inhibition (CBI) and performed a sensor-based movement analysis at baseline and three times after the intervention (post1 = 15 min; post2 = 55 min; post3 = 95 min). Corticospinal excitability increased following cerebellar tACS and tRNS compared to sham stimulation. This effect was most pronounced directly after stimulation but lasted for at least 55 min after tACS. Cortico-cortical and cerebello-cortical conditioning protocols, as well as sensor-based movement analyses, did not change. Our findings suggest that cerebellar 50 Hz tACS is the most effective protocol to change corticospinal excitability.</p

    Image_1_Cerebellar transcranial current stimulation – An intraindividual comparison of different techniques.pdf

    No full text
    Transcranial current stimulation (tCS) techniques have been shown to induce cortical plasticity. As an important relay in the motor system, the cerebellum is an interesting target for plasticity induction using tCS, aiming to modulate its excitability and connectivity. However, until now it remains unclear, which is the most effective tCS method for inducing plasticity in the cerebellum. Thus, in this study, the effects of anodal transcranial direct current stimulation (tDCS), 50 Hz transcranial alternating current stimulation (50 Hz tACS), and high frequency transcranial random noise stimulation (tRNS) were compared with sham stimulation in 20 healthy subjects in a within-subject design. tCS was applied targeting the cerebellar lobe VIIIA using neuronavigation. We measured corticospinal excitability, short-interval intracortical inhibition (SICI), short-latency afferent inhibition (SAI), and cerebellar brain inhibition (CBI) and performed a sensor-based movement analysis at baseline and three times after the intervention (post1 = 15 min; post2 = 55 min; post3 = 95 min). Corticospinal excitability increased following cerebellar tACS and tRNS compared to sham stimulation. This effect was most pronounced directly after stimulation but lasted for at least 55 min after tACS. Cortico-cortical and cerebello-cortical conditioning protocols, as well as sensor-based movement analyses, did not change. Our findings suggest that cerebellar 50 Hz tACS is the most effective protocol to change corticospinal excitability.</p

    Table_2_Cerebellar transcranial current stimulation – An intraindividual comparison of different techniques.pdf

    No full text
    Transcranial current stimulation (tCS) techniques have been shown to induce cortical plasticity. As an important relay in the motor system, the cerebellum is an interesting target for plasticity induction using tCS, aiming to modulate its excitability and connectivity. However, until now it remains unclear, which is the most effective tCS method for inducing plasticity in the cerebellum. Thus, in this study, the effects of anodal transcranial direct current stimulation (tDCS), 50 Hz transcranial alternating current stimulation (50 Hz tACS), and high frequency transcranial random noise stimulation (tRNS) were compared with sham stimulation in 20 healthy subjects in a within-subject design. tCS was applied targeting the cerebellar lobe VIIIA using neuronavigation. We measured corticospinal excitability, short-interval intracortical inhibition (SICI), short-latency afferent inhibition (SAI), and cerebellar brain inhibition (CBI) and performed a sensor-based movement analysis at baseline and three times after the intervention (post1 = 15 min; post2 = 55 min; post3 = 95 min). Corticospinal excitability increased following cerebellar tACS and tRNS compared to sham stimulation. This effect was most pronounced directly after stimulation but lasted for at least 55 min after tACS. Cortico-cortical and cerebello-cortical conditioning protocols, as well as sensor-based movement analyses, did not change. Our findings suggest that cerebellar 50 Hz tACS is the most effective protocol to change corticospinal excitability.</p
    corecore