432 research outputs found

    Measurement of the Transmission Phase of an Electron in a Quantum Two-Path Interferometer

    Full text link
    A quantum two-path interferometer allows for direct measurement of the transmission phase shift of an electron, providing useful information on coherent scattering problems. In mesoscopic systems, however, the two-path interference is easily smeared by contributions from other paths, and this makes it difficult to observe the \textit{true} transmission phase shift. To eliminate this problem, multi-terminal Aharonov-Bohm (AB) interferometers have been used to derive the phase shift by assuming that the relative phase shift of the electrons between the two paths is simply obtained when a smooth shift of the AB oscillations is observed. Nevertheless the phase shifts using such a criterion have sometimes been inconsistent with theory. On the other hand, we have used an AB ring contacted to tunnel-coupled wires and acquired the phase shift consistent with theory when the two output currents through the coupled wires oscillate with well-defined anti-phase. Here, we investigate thoroughly these two criteria used to ensure a reliable phase measurement, the anti-phase relation of the two output currents and the smooth phase shift in the AB oscillation. We confirm that the well-defined anti-phase relation ensures a correct phase measurement with a quantum two-path interference. In contrast we find that even in a situation where the anti-phase relation is less well-defined, the smooth phase shift in the AB oscillation can still occur but does not give the correct transmission phase due to contributions from multiple paths. This indicates that the phase relation of the two output currents in our interferometer gives a good criterion for the measurement of the \textit{true} transmission phase while the smooth phase shift in the AB oscillation itself does not.Comment: 5 pages, 4 figure

    Enhanced self-field critical current density of nano-composite YBa(2)Cu(3)O(7) thin films grown by pulsed-laser deposition

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ EPLA, 2008.Enhanced self-field critical current density Jc of novel, high-temperature superconducting thin films is reported. Layers are deposited on (001) MgO substrates by laser ablation of YBa2Cu3O7−ή(Y-123) ceramics containing Y2Ba4CuMOx (M-2411, M=Ag, Nb, Ru, Zr) nano-particles. The Jc of films depends on the secondary-phase content of the ceramic targets, which was varied between 0 and 15 mol%. Composite layers (2 mol% of Ag-2411 and Nb-2411) exhibit Jc values at 77 K of up to 5.1 MA/cm2, which is 3 to 4 times higher than those observed in films deposited from phase pure Y-123 ceramics. Nb-2411 grows epitaxially in the composite layers and the estimated crystallite size is ~10 nm.The Austrian Science Fund, the Austrian Federal Ministry of Economics and Labour, the European Science Foundation and the Higher Education Commission of Pakistan

    Remotely pumped GHz anti-bunched emission from single exciton states

    Full text link
    Quantum communication networks require on-chip transfer and manipulation of single particles as well as their interconversion to single photons for long-range information exchange. Flying excitons propelled by GHz surface acoustic waves (SAWs) are outstanding messengers to fulfill these requirements. Here, we demonstrate the acoustic manipulation of two-level states consisting of individual excitons bound to shallow impurities centers embedded in a semiconductor quantum well. Time-resolved photoluminescence studies show that the emission intensity and energy from these centers oscillate at the SAW frequency of 3.5 GHz. Furthermore, these centers can be remotely pumped via acoustic transport along a quantum well channel over several micron. Time correlation studies reveal that the centers emit anti-bunched light, thus acting as single-photon sources operating at GHz frequencies. Our results pave the way for the exciton-based on-demand manipulation and on-chip transfer of single excitons at microwave frequencies with a natural photonic interface.Comment: 10 pages, 7 figure

    Transmission Phase in the Kondo Regime Revealed in a Two-Path Interferometer

    Get PDF
    We report on the direct observation of the transmission phase shift through a Kondo correlated quantum dot by employing a new type of two-path interferometer. We observed a clear π/2\pi/2-phase shift, which persists up to the Kondo temperature TKT_{\rm K}. Above this temperature, the phase shifts by more than π/2\pi/2 at each Coulomb peak, approaching the behavior observed for the standard Coulomb blockade regime. These observations are in remarkable agreement with 2-level numerical renormalization group calculations. The unique combination of experimental and theoretical results presented here fully elucidates the phase evolution in the Kondo regime.Comment: 4 pages, 3 figure

    The effective mass of two--dimensional 3He

    Full text link
    We use structural information from diffusion Monte Carlo calculations for two--dimensional 3He to calculate the effective mass. Static effective interactions are constructed from the density-- and spin structure functions using sumrules. We find that both spin-- and density-- fluctuations contribute about equally to the effective mass. Our results show, in agreement with recent experiments, a flattening of the single--particle self--energy with increasing density, which eventually leads to a divergent effective mass.Comment: 4 pages, accepted in PR

    A 1.8 mJ, picosecond Nd:YVO4 bounce amplifier pump front-end system for high-accuracy XUV-frequency comb spectroscopy

    Get PDF
    1 mu s, providing a promising pump laser system for parametric amplification and subsequent upconversion of near-infrared frequency combs to the extreme ultraviolet (XUV). (C) 2012 by Astro, Ltd

    Wind-induced baroclinic response of Lake Constance

    Full text link

    Remanence effects in the electrical resistivity of spin glasses

    Get PDF
    We have measured the low temperature electrical resistivity of Ag : Mn mesoscopic spin glasses prepared by ion implantation with a concentration of 700 ppm. As expected, we observe a clear maximum in the resistivity (T ) at a temperature in good agreement with theoretical predictions. Moreover, we observe remanence effects at very weak magnetic fields for the resistivity below the freezing temperature Tsg: upon Field Cooling (fc), we observe clear deviations of (T ) as compared with the Zero Field Cooling (zfc); such deviations appear even for very small magnetic fields, typically in the Gauss range. This onset of remanence for very weak magnetic fields is reminiscent of the typical signature on magnetic susceptibility measurements of the spin glass transition for this generic glassy system

    Thermodynamics of low dimensional spin-1/2 Heisenberg ferromagnets in an external magnetic field within Green function formalism

    Full text link
    The thermodynamics of low dimensional spin-1/2 Heisenberg ferromagnets (HFM) in an external magnetic field is investigated within a second-order two-time Green function formalism in the wide temperature and field range. A crucial point of the proposed scheme is a proper account of the analytical properties for the approximate transverse commutator Green function obtained as a result of the decoupling procedure. A good quantitative description of the correlation functions, magnetization, susceptibility, and heat capacity of the HFM on a chain, square and triangular lattices is found for both infinite and finite-sized systems. The dependences of the thermodynamic functions of 2D HFM on the cluster size are studied. The obtained results agree well with the corresponding data found by Bethe ansatz, exact diagonalization, high temperature series expansions, and quantum Monte Carlo simulations.Comment: 11 pages, 14 figure

    Contrasting the beam interaction characteristics of selected lasers with a partially stabilised zirconia (PSZ) bio-ceramic

    Get PDF
    Differences in the beam interaction characteristics of a CO2 laser, a Nd:YAG laser, a high power diode laser (HPDL) and an excimer laser with a partially stabilised zirconia (PSZ) bio-ceramic have been studied. A derivative of Beer-Lambert’s law was applied and the laser beam absorption lengths of the four lasers were calculated as 33.55 x 10-3 cm for the CO2 laser, 18.22 x 10-3 cm for the Nd:YAG laser, 17.17 x 10-3 cm for the HPDL and 8.41 x 10-6 cm for the excimer laser. It was determined graphically that the fluence threshold values at which significant material removal was effected by the CO2 laser, the Nd:YAG laser, the HPDL and the excimer laser were 52 J/cm2, 97 J/cm2, 115 J/cm2 and 0.48 J/cm2 respectively. The thermal loading value for the CO2 laser, the Nd:YAG laser, the HPDL and the excimer laser were calculated as being 1.55 kJ/cm3, 5.32 kJ/cm3, 6.69 kJ/cm3 and 57.04 kJ/cm3 respectively
    • 

    corecore