163 research outputs found

    Heated soil-water extract effect on bacterial growth: pH or toxic compounds?

    Get PDF
    Fire-induced soil changes influence indirectly on soil microbial response, mainly due to pH increases and organic matter alterations. Nevertheless, field studies include overlapped effects and it is difficult distinguish the real origin of microbial response. In this work we have performed a laboratory experiment focus on the study of heated soil-water extract effect on bacterial growth, trying to isolate pH and soluble organic carbon alterations induced by heating soil at different temperatures. Bacterial growth was estimated by 3H-leucine incorporation technique which allows isolate bacterial activity response to an alteration. Different heated treatments were applied to unaltered forest soil samples, to simulate moderate (heating at 300 oC) or high (heating at 500 oC) intensity fire. In order to isolate possible pH changes effect, the experience was repeated adding pH buffers to bring the extract to the unaltered soil pH. Preliminary results show bacterial growth inhibition in both heated treatment compared to bacterial growth of the same bacterial suspension incubated with water. The reestablishment of pH improve the bacterial growth of samples incubated in heated soil-water extract, with a more marked effect on incubation soil-water extract from soil heated at 500 oC. These results evidence the importance of pH changes on low pH adapted bacterial community and the presence of other factors presents in the soluble fraction that are limiting bacterial proliferation

    Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment

    Get PDF
    Temperature not only has direct effects on microbial activity, but can also affect activity indirectly by changing the temperature dependency of the community. This would result in communities performing better over time in response to increased temperatures. We have for the first time studied the effect of soil temperature (5–50 °C) on the community adaptation of both bacterial (leucine incorporation) and fungal growth (acetate‐in‐ergosterol incorporation). Growth at different temperatures was estimated after about a month using a short‐term assay to avoid confounding the effects of temperature on substrate availability. Before the experiment started, fungal and bacterial growth was optimal around 30 °C. Increasing soil temperature above this resulted in an increase in the optimum for bacterial growth, correlated to soil temperature, with parallel shifts in the total response curve. Below the optimum, soil temperature had only minor effects, although lower temperatures selected for communities growing better at the lowest temperature. Fungi were affected in the same way as bacteria, with large shifts in temperature tolerance at soil temperatures above that of optimum for growth. A simplified technique, only comparing growth at two contrasting temperatures, gave similar results as using a complete temperature curve, allowing for large scale measurements also in field situations with small differences in temperature

    Graphene Synthesis Using a CVD Reactor and a Discontinuous Feed of Gas Precursor at Atmospheric Pressure

    Get PDF
    The present work shows a new method in order to cost-effectively achieve the synthesis of graphene by Chemical Vapor Deposition (CVD). Unlike most usual processes, where precursors such as argon, H2, CH4, and high purity copper foil are used, the proposed method has replaced the previous ones by N2, N2 (90%) : H2 (10%), C2H2, and electrolytic copper (technical grade) since the use of industrialized precursors helps reduce production costs. On the other hand, the process was modified from a continuous flow system with vacuum to a discontinuous one at atmospheric pressure, eliminating the use of vacuum pump. In addition, this modification optimized the consumption of gases, which reduced the waste and the emission of pollutant gases into the atmosphere. Graphene films were grown under different gas flowrates and temperatures. Then, the obtained material was characterized by TEM, Raman spectroscopy, and AFM, confirming the presence of few graphene layers. In brief, the growth time was reduced to six minutes with acetylene as a carbon precursor at 1000°C and at atmospheric pressure, with a flow rate of 30 sccm. Finally, the reported conditions can be used for the synthesis of good quality graphene films in industrial applications

    Short-term microbial response after laboratory heating and ground mulching adition

    Get PDF
    Fire alters soil organic matter inducing quantitative and qualitative changes that presumably will affect post-fire soil microbial recolonisation. Several studies have evidenced marked soil organic carbon reduction after moderate and high intensity fire, which limit the total recovery of microbial biomass during years. In order to evaluate the role of soil organic matter alteration in short-term microbial colonization process, we perform a preliminary experiment where unaltered soil from Sierra Nevada Natural Park was heated at 300 ºC during 20 minutes in a muffle furnace (H300) to simulate a medium-high intensity fire. After heating, soil samples were inoculated with unaltered fresh soil, rewetted at 55-65% of water holding capacity and incubated during 3 weeks. At the same time, unheated soil samples were incubated under the same conditions as control (UH). In addition, trying to partially alleviate soil organic matter fire-induced alterations effects on microbial colonization, we include an organic amendment treatment (M+). So, part of heated and unheated samples were amended with a mix of ground alfalfa:straw (1:1) and soil microbial abundance and activity were monitored together with soil organic matter changes. Heating process reduces total organic carbon content. After one week of incubation carbon content in heated samples was lower than the control one, in both, amended and un-amended samples. Microbial biomass and respiration were negatively affected by heating. Ground mulching addition increase microbial biomass and respiration but was not enough to reach control values during the whole study. Nevertheless, viable and cultivable fungi and bacteria showed different pattern. After two weeks of incubation both, fungi and bacteria were higher in heated samples. Ground mulching addition appears to stimulate fungal response in both, heated and unheated samples. Preliminary results of this experiment evidence the transcendence of soil organic matter fire-induced changes on microbial colonization process and the importance to determine several microbial parameters to obtain a more faithful conclusion about microbial response. The organic amendment appears to alleviate partially heated-induced damage, highlighting the positive stimulation on fungal abundance in both, heated and unheated samples.Ministerio de Economía y Competitividad CGL2013-47862-C2-1- RMinisterio de Economía y Competitividad CGL2012-38655-C04-0

    Relationships between soil water repellency and microbial community composition under different plant species in a Mediterranean semiarid forest

    Get PDF
    Soil water repellency (SWR) can influence many hydrological soil properties, including water infiltration, uneven moisture distribution or water retention. In the current study we investigated how variable SWR persistence in the field is related to the soil microbial community under different plant species (P. halepensis, Q. rotundifolia, C. albidus and R. officinalis) in a Mediterranean forest. The soil microbial community was determined through phospholipid fatty acids (PLFA). The relationships between microbiological community structure and the soil properties pH, Glomalin Related Soil Protein (GRSP) and soil organic matter (SOM) content were also studied. Different statistical analyses were used: Principal Component Analysis (PCA), ANOVA, Redundancy Analysis and Pearson correlations. The highest concentrations of PLFA were found in the most water repellent samples. PCA showed that microorganism composition was more dependent of the severity of SWR than the type of plant species. In the Redundancy Analysis, SWR was the only significant factor (p<0.05) to explain PLFA distributions. The only PLFA biomarkers directly related to SWR were associated with Actinobacteria (10Me16:0, 10Me17:0 and 10Me18:0). All the results suggest that a strong dependence between SWR and microbial community composition.Ministerio de Ciencia e Innovación CGL2010-21670-C02-0

    Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest

    Get PDF
    Natural soil water repellency is a property that has already been observed in forest soils and is characterized by its patchy distribution. There are many factors involved in its development. In this work, we have studied a large number of chemical and biological factors under the influence of different plant species (. Pinus halepensis, Quercus rotundifolia, Cistus albidus and Rosmarinus officinalis) to learn which has the greatest responsibility for its presence and persistence in the top-soil layer. We observed strong and significant correlations between ergosterol, glomalin related soil protein (GRSP), extractable lipids, soil organic matter (SOM) content and water repellency (WR). Our results suggested lipid fraction as the principal factor. Moreover, apart from Pinus, fungal biomass seems to be also related to the SOM content. Soil WR found under Pinus appears to be the most influenced by fungi. Quality of SOM, to be precise, lipid fraction could be responsible for WR and its relationship with fungal activity.Ministerio de Economía y Competitividad CGL2010- 21670-C02-01, CGL2012-38655-C04-0

    Do stones modify the spatial distribution of fire induced soil water repellency? Preliminary data

    Get PDF
    Water repellency is a property of many fire-affected soils that contributes to delayed wetting rates and shows many hydrological and geomorphological consequences. Fire-induced soil water repellency (SWR) may be modulated by pre-fire soil and vegetation properties. Many studies have been carried out to investigate the relationship between SWR and these properties. But, to our knowledge, no studies have considered the effect of surface stones in the spatial distribution of fire-induced SWR. In this research, we study the occurrence and spatial and vertical distribution of SWR and its consequences on soil structure after experimental burning in a previously wettable soil under different stone covers (0, 15, 30, 45 and 60%). In our experiment, burning induced critical or subcritical SWR in the upper millimetres of previously wettable soil. Fire-induced SWR did not vary with stone cover, but critical SWR was reached in inter-stone soil areas. At stone-covered soil areas, SWR was increased, but WDPTs remained mostly below the 5 s thresholdMinisterio de Economía y Competitividad CGL2010- 21670-C02-0
    corecore