12 research outputs found

    SN 2021gno: a Calcium-rich transient with double-peaked light curves

    Full text link
    We present extensive ultraviolet (UV) and optical photometric and optical spectroscopic follow-up of supernova (SN)~2021gno by the "Precision Observations of Infant Supernova Explosions" (POISE) project, starting less than two days after the explosion. Given its intermediate luminosity, fast photometric evolution, and quick transition to the nebular phase with spectra dominated by [Ca~II] lines, SN~2021gno belongs to the small family of Calcium-rich transients. Moreover, it shows double-peaked light curves, a phenomenon shared with only four other Calcium-rich events. The projected distance from the center of the host galaxy is not as large as other objects in this family. The initial optical light-curve peaks coincide with a very quick decline of the UV flux, indicating a fast initial cooling phase. Through hydrodynamical modelling of the bolometric light curve and line velocity evolution, we found that the observations are compatible with the explosion of a highly-stripped massive star with an ejecta mass of 0.8M0.8\,M_\odot and a 56^{56}Ni mass of 0.024 M0.024~M_{\odot}. The initial cooling phase (first light curve peak) is explained by the presence of an extended circumstellar material comprising \sim102M10^{-2}\,M_{\odot} with an extension of 1100R1100\,R_{\odot}. We discuss if hydrogen features are present in both maximum-light and nebular spectra, and its implications in terms of the proposed progenitor scenarios for Calcium-rich transients.Comment: 21 pages, 13 figures, accepted for publication in MNRA

    SN 2022oqm: A Multi-peaked Calcium-rich Transient from a White Dwarf Binary Progenitor System

    Full text link
    We present the photometric and spectroscopic evolution of SN 2022oqm, a nearby multi-peaked hydrogen- and helium-weak calcium-rich transient (CaRT). SN 2022oqm was detected 19.9 kpc from its host galaxy, the face-on spiral galaxy NGC 5875. Extensive spectroscopic coverage reveals a hot (T >= 40,000 K) continuum and carbon features observed ~1 day after discovery, SN Ic-like photospheric-phase spectra, and strong forbidden calcium emission starting 38 days after discovery. SN 2022oqm has a relatively high peak luminosity (MB = -17 mag) for CaRTs, making it an outlier in the population. We determine that three power sources are necessary to explain SN 2022oqm's light curve, with each power source corresponding to a distinct peak in its light curve. The first peak of the light curve is powered by an expanding blackbody with a power law luminosity, consistent with shock cooling by circumstellar material. Subsequent peaks are powered by a double radioactive decay model, consistent with two separate sources of photons diffusing through an optically thick ejecta. From the optical light curve, we derive an ejecta mass and 56Ni mass of ~0.89 solar masses and ~0.09 solar masses, respectively. Detailed spectroscopic modeling reveals ejecta that is dominated by intermediate-mass elements, with signs that Fe-peak elements have been well-mixed. We discuss several physical origins for SN 2022oqm and favor a white dwarf progenitor model. The inferred ejecta mass points to a surprisingly massive white dwarf, challenging models of CaRT progenitors.Comment: 33 pages, 17 figures, 5 tables, Submitted to Ap

    SN 2021gno: a calcium-rich transient with double-peaked light curves

    Get PDF
    We present extensive ultraviolet (UV) and optical photometric and optical spectroscopic follow-up of supernova (SN) 2021gno by the 'Precision Observations of Infant Supernova Explosions' (POISE) project, starting less than 2 d after the explosion. Given its intermediate luminosity, fast photometric evolution, and quick transition to the nebular phase with spectra dominated by [Ca ii] lines, SN 2021gno belongs to the small family of Calcium-rich transients. Moreover, it shows double-peaked light curves, a phenomenon shared with only four other Calcium-rich events. The projected distance from the centre of the host galaxy is not as large as other objects in this family. The initial optical light-curve peaks coincide with a very quick decline of the UV flux, indicating a fast initial cooling phase. Through hydrodynamical modelling of the bolometric light curve and line velocity evolution, we found that the observations are compatible with the explosion of a highly stripped massive star with an ejecta mass of and a 56Ni mass of 0.024 M⊙. The initial cooling phase (first light-curve peak) is explained by the presence of an extended circumstellar material comprising ∼ with an extension of. We discuss if hydrogen features are present in both maximum-light and nebular spectra, and their implications in terms of the proposed progenitor scenarios for Calcium-rich transients

    INVESTIGATION OF GEOMETRIC PERFORMANCE OF AN INDOOR MOBILE MAPPING SYSTEM

    No full text
    Up-to-date and reliable 3D information of indoor environments is a prerequisite for many location- based services. One possibility to capture the necessary 3D data is to make use of Mobile Mapping Systems (MMSs) which rely for instance on SLAM (simultaneous localization and mapping). In most indoor environments, MMSs are by far faster than classic static systems. Moreover, they might deliver the point clouds with higher degree of completeness. In this paper, the geometric quality of point clouds of a state-of-the-art MMS (Viametris iMS3D) is investigated. In order to quantify the quality of iMS3D MMS, four different evaluation strategies namely cloud to cloud, point to plane, target to target and model based evaluation are employed. We conclude that the measurement accuracies are better than 1 cm and the precision of the point clouds are better than 3 cm in our experiments. For indoor mapping applications with few centimeters accuracy, the system offers a very fast solution. Moreover, as a nature of the current SLAM-based approaches, trajectory loop should be closed, but in some practical situations, closing the local trajectory loop might not be always possible. Our observation reveals that performing continuous repeated scanning could decrease the destructive effect of local unclosed loops

    Three is the magic number - distance measurement of NGC 3147 using SN 2021hpr and its siblings

    No full text
    Context. The nearby spiral galaxy NGC 3147 hosted three Type Ia supernovae (SNe Ia) in the past decades, which have been subjects of intense follow-up observations. Simultaneous analysis of their data provides a unique opportunity for testing the different light curve fitting methods and distance estimations.Aims. The detailed optical follow-up of SN 2021hpr allows us to revise the previous distance estimations to NGC 3147, and compare the widely used light curve fitting algorithms to each other. After the combination of the available and newly published data of SN 2021hpr, its physical properties can be also estimated with higher accuracy.Methods. We present and analyse new BVgriz and Swift photometry of SN 2021hpr to constrain its general physical properties. Together with its siblings, SNe 1997bq and 2008fv, we cross-compare the individual distance estimates of these three SNe given by the SALT code, and also check their consistency with the results from the MLCS2k2 method. The early spectral series of SN 2021hpr are also fit with the radiative spectral code TARDIS in order to verify the explosion properties and constrain the chemical distribution of the outer ejecta.Results. After combining the distance estimates for the three SNe, the mean distance to their host galaxy, NGC 3127, is 42.5 ± 1.0 Mpc, which matches with the distance inferred by the most up-to-date LC fitters, SALT3 and BayeSN. We confirm that SN 2021hpr is a Branch-normal Type Ia SN that ejected ∼ 1.12 ± 0.28 M⊙ from its progenitor white dwarf, and synthesized ∼ 0.44 ± 0.14 M⊙ of radioactive 56Ni

    Three is the magic number - distance measurement of NGC 3147 using SN 2021hpr and its siblings

    No full text
    Context. The nearby spiral galaxy NGC 3147 hosted three Type Ia supernovae (SNe Ia) in the past decades, which have been subjects of intense follow-up observations. Simultaneous analysis of their data provides a unique opportunity for testing the different light curve fitting methods and distance estimations.Aims. The detailed optical follow-up of SN 2021hpr allows us to revise the previous distance estimations to NGC 3147, and compare the widely used light curve fitting algorithms to each other. After the combination of the available and newly published data of SN 2021hpr, its physical properties can be also estimated with higher accuracy.Methods. We present and analyse new BVgriz and Swift photometry of SN 2021hpr to constrain its general physical properties. Together with its siblings, SNe 1997bq and 2008fv, we cross-compare the individual distance estimates of these three SNe given by the SALT code, and also check their consistency with the results from the MLCS2k2 method. The early spectral series of SN 2021hpr are also fit with the radiative spectral code TARDIS in order to verify the explosion properties and constrain the chemical distribution of the outer ejecta.Results. After combining the distance estimates for the three SNe, the mean distance to their host galaxy, NGC 3127, is 42.5 ± 1.0 Mpc, which matches with the distance inferred by the most up-to-date LC fitters, SALT3 and BayeSN. We confirm that SN 2021hpr is a Branch-normal Type Ia SN that ejected ∼ 1.12 ± 0.28 M⊙ from its progenitor white dwarf, and synthesized ∼ 0.44 ± 0.14 M⊙ of radioactive 56Ni
    corecore