37 research outputs found

    Increasing Protein at the Expense of Carbohydrate in the Diet Down-Regulates Glucose Utilization as Glucose Sparing Effect in Rats

    Get PDF
    High protein (HP) diet could serve as a good strategy against obesity, provoking the changes in energy metabolic pathways. However, those modifications differ during a dietary adaptation. To better understand the mechanisms involved in effect of high protein diet (HP) on limiting adiposity in rats we studied in parallel the gene expression of enzymes involved in protein and energy metabolism and the profiles of nutrients oxidation. Eighty male Wistar rats were fed a normal protein diet (NP, 14% of protein) for one week, then either maintained on NP diet or assigned to a HP diet (50% of protein) for 1, 3, 6 and 14 days. mRNA levels of genes involved in carbohydrate and lipid metabolism were measured in liver, adipose tissues, kidney and muscles by real time PCR. Energy expenditure (EE) and substrate oxidation were measured by indirect calorimetry. Liver glycogen and plasma glucose and hormones were assayed. In liver, HP feeding 1) decreased mRNA encoding glycolysis enzymes (GK, L-PK) and lipogenesis enzymes(ACC, FAS), 2) increased mRNA encoding gluconeogenesis enzymes (PEPCK), 3) first lowered, then restored mRNA encoding glycogen synthesis enzyme (GS), 4) did not change mRNA encoding β-oxidation enzymes (CPT1, ACOX1, βHAD). Few changes were seen in other organs. In parallel, indirect calorimetry confirmed that following HP feeding, glucose oxidation was reduced and fat oxidation was stable, except during the 1st day of adaptation where lipid oxidation was increased. Finally, this study showed that plasma insulin was lowered and hepatic glucose uptake was decreased. Taken together, these results demonstrate that following HP feeding, CHO utilization was increased above the increase in carbohydrate intake while lipogenesis was decreased thus giving a potential explanation for the fat lowering effect of HP diets

    Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009

    Get PDF
    Insulin resistance is a hallmark of type 2 diabetes mellitus and is associated with a metabolic and cardiovascular cluster of disorders (dyslipidaemia, hypertension, obesity [especially visceral], glucose intolerance, endothelial dysfunction), each of which is an independent risk factor for cardiovascular disease (CVD). Multiple prospective studies have documented an association between insulin resistance and accelerated CVD in patients with type 2 diabetes, as well as in non-diabetic individuals. The molecular causes of insulin resistance, i.e. impaired insulin signalling through the phosphoinositol-3 kinase pathway with intact signalling through the mitogen-activated protein kinase pathway, are responsible for the impairment in insulin-stimulated glucose metabolism and contribute to the accelerated rate of CVD in type 2 diabetes patients. The current epidemic of diabetes is being driven by the obesity epidemic, which represents a state of tissue fat overload. Accumulation of toxic lipid metabolites (fatty acyl CoA, diacylglycerol, ceramide) in muscle, liver, adipocytes, beta cells and arterial tissues contributes to insulin resistance, beta cell dysfunction and accelerated atherosclerosis, respectively, in type 2 diabetes. Treatment with thiazolidinediones mobilises fat out of tissues, leading to enhanced insulin sensitivity, improved beta cell function and decreased atherogenesis. Insulin resistance and lipotoxicity represent the missing links (beyond the classical cardiovascular risk factors) that help explain the accelerated rate of CVD in type 2 diabetic patients

    Sterol-regulatory-element-binding protein I c mediates insulin action on hepatic gene expression

    No full text
    Effects of insulin on the expression of liver-specific genes are part of the adaptive mechanisms aimed at maintaining energy homeostasis in mammals. When the diet is rich in carbohydrates, secreted insulin stimulates the expression of genes for enzymes involved in glucose utilization (glucokinase, L-type pyruvate kinase and lipogenic enzymes) and inhibits genes for enzymes involved in glucose production (phosphenolpyruvate carboxykinase). The mechanisms by which insulin controls the expression of these genes have been poorly understood. Recently, the transcription factor sterol-regulatory-element-binding protein 1c has been proposed as a key mediator of insulin transcriptional effects. Here we review the evidence that has led to this proposal and the consequences for our understanding of insulin effects in physiological or pathological conditions

    Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes.

    No full text
    The transcription factor sterol regulatory-element-binding protein-1c (SREBP-1c) plays a major role in the effect of insulin on the transcription of hepatic genes such as glucokinase and fatty acid synthase. We show here in cultured rat hepatocytes that insulin, through activation of the phosphatidylinositol 3-kinase pathway increases the abundance of the precursor form of SREBP-1c in endoplasmic reticulum. This precursor form is then rapidly cleaved, possibly irrespective of the continuous presence of insulin, leading to an increased content of the nuclear mature form of SREBP-1c. Nevertheless, the increased amount of the mature form of SREBP-1c in the nucleus is not a prerequisite for the rapid effect of insulin on the transcription of genes such as glucokinase, suggesting that additional actions of the hormone are involved, such as the activation of the nuclear form of SREBP-1c or of an unidentified SREBP-1c partner
    corecore