149 research outputs found

    Embryonic Development following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation

    Get PDF
    Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major epigenetic barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed normally at 2-cell mouse embryos generated by IVF but not SCNT. RRRs are enriched for H3K9me3 in donor somatic cells, and its removal by ectopic expression of the H3K9me3 demethylase Kdm4d not only reactivates the majority of RRRs, but also greatly improves SCNT efficiency. Furthermore, use of donor somatic nuclei depleted of H3K9 methyltransferases markedly improves SCNT efficiency. Our study thus identifies H3K9me3 as a critical epigenetic barrier in SCNT-mediated reprogramming and provides a promising approach for improving mammalian cloning efficiency

    Haploinsufficiency, but Not Defective Paternal 5mC Oxidation, Accounts for the Developmental Defects of Maternal Tet3 Knockouts

    Get PDF
    Paternal DNA demethylation in mammalian zygotes is achieved through Tet3-mediated iterative oxidation of 5-methylcytosine (5mC) coupled with replication-dependent dilution. Tet3-mediated paternal DNA demethylation is believed to play important roles in mouse development given that Tet3 heterozygous embryos derived from Tet3-deficient oocytes exhibit embryonic sublethality. Here, we demonstrate that the sublethality phenotype of the Tet3 maternal knockout mice is caused by haploinsufficiency but not defective paternal 5mC oxidation. We found that Tet3 heterozygous progenies derived from heterozygous father or mother also exhibit sublethality. Importantly, wild-type embryos reconstituted with paternal pronuclei that bypassed 5mC oxidation develop and grow to adulthood normally. Genome-scale DNA methylation analysis demonstrated that hypermethylation in maternal Tet3 knockout embryos is largely diminished by the blastocyst stage. Our study thus reveals that Tet3-mediated paternal 5mC oxidation is dispensable for mouse development and suggests the existence of a compensatory mechanism for defective 5mC oxidation in preimplantation embryos

    Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development

    Get PDF
    One of the recent advances in the epigenetic field is the demonstration that the Tet family of proteins are capable of catalyzing conversion of 5-methylcytosine (5mC) of DNA to 5-hydroxymethylcytosine (5hmC). Interestingly, recent studies have shown that 5hmC can be further oxidized by Tet proteins to generate 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which can be removed by thymine DNA glycosylase (TDG). To determine whether Tet-catalyzed conversion of 5mC to 5fC and 5caC occurs in vivo in zygotes, we generated antibodies specific for 5fC and 5caC. By immunostaining, we demonstrate that loss of 5mC in the paternal pronucleus is concurrent with the appearance of 5fC and 5caC, similar to that of 5hmC. Importantly, instead of being quickly removed through an enzyme-catalyzed process, both 5fC and 5caC exhibit replication-dependent dilution during mouse preimplantation development. These results not only demonstrate the conversion of 5mC to 5fC and 5caC in zygotes, but also indicate that both 5fC and 5caC are relatively stable and may be functional during preimplantation development. Together with previous studies, our study suggests that Tet-catalyzed conversion of 5mC to 5hmC/5fC/5caC followed by replication-dependent dilution accounts for paternal DNA demethylation during preimplantation development

    A novel in vivo corneal trans-epithelial electrical resistance measurement device

    Get PDF
    Purpose: To develop a device that is capable of easily measuring corneal transepithelial electrical resistance (TER) and changes in the corneal barrier function. Methods: We had previously developed an in vivo method for measuring corneal TER using intraocular electrode. This method can be used to precisely measure the decline of the corneal barrier function after instillation of benzalkonium chloride (BAC). In order to lessen the invasiveness of that procedure, we further refined the method for measuring the corneal TER by developing electrodes that could be placed on the cornea and in the conjunctival sac instead of inserting them into the anterior chamber. TER was then calculated by subtracting the electrical resistance, which lacked the corneal epithelial input, from the whole electrical resistance that was measured between the electrodes. Slit lamp examination and scanning electron microscopy (SEM) were used to determine safety of the new device. Corneal TER changes after exposure to 0.02% BAC were determined using the new device as well as SEM and transmission electron microscopy (TEM). Results: Slit lamp examination before and after exposure of rabbits\u27 corneas to the sensor confirmed safety of the device. SEM examination revealed no difference of the corneal epithelium which exposed to the new device with normal corneas. SEM and TEM pictures revealed damaged microvilli and tight junctions after instillation of 0.02% BAC. TER change after treatment with 0.02%BAC was similar to those determined by the established anterior chamber method. Conclusion: We succeeded to develop a less invasive device for corneal TER measurement in vivo in animals. This new device may be applicable in the future for clinical use in humans

    Low-Intensity Resistance Training with Moderate Blood Flow Restriction Appears Safe and Increases Skeletal Muscle Strength and Size in Cardiovascular Surgery Patients:A Pilot Study

    Get PDF
    We examined the safety and the effects of low-intensity resistance training (RT) with moderate blood flow restriction (KAATSU RT) on muscle strength and size in patients early after cardiac surgery. Cardiac patients (age 69.6 +/- 12.6 years, n = 21, M = 18) were randomly assigned to the control (n = 10) and the KAATSU RT group (n = 11). All patients had received a standard aerobic cardiac rehabilitation program. The KAATSU RT group additionally executed low-intensity leg extension and leg press exercises with moderate blood flow restriction twice a week for 3 months. RT-intensity and volume were increased gradually. We evaluated the anterior mid-thigh thickness (MTH), skeletal muscle mass index (SMI), handgrip strength, knee extensor strength, and walking speed at baseline, 5-7 days after cardiac surgery, and after 3 months. A physician monitored the electrocardiogram, rate of perceived exertion, and the color of the lower limbs during KAATSU RT. Creatine phosphokinase (CPK) and D-dimer were measured at baseline and after 3 months. There were no side effects during KAATSU RT. CPK and D-dimer were normal after 3 months. MTH, SMI, walking speed, and knee extensor strength increased after 3 months with KAATSU RT compared with baseline. Relatively low vs. high physical functioning patients tended to increase physical function more after 3 months with KAATSU RT. Low-intensity KAATSU RT as an adjuvant to standard cardiac rehabilitation can safely increase skeletal muscle strength and size in cardiovascular surgery patients.</p
    corecore