15 research outputs found
Synthesizing the degree of polarization uniformity from non-polarization-sensitive optical coherence tomography signals using a neural network
Degree of polarization uniformity (DOPU) imaging obtained by
polarization-sensitive optical coherence tomography (PS-OCT) has the potential
to provide biomarkers for retinal diseases. It highlights abnormalities in the
retinal pigment epithelium that are not always clear in the OCT intensity
images. However, a PS-OCT system is more complicated than conventional OCT. We
present a neural-network-based approach to estimate the DOPU from standard OCT
images. DOPU images were used to train a neural network to synthesize the DOPU
from single-polarization-component OCT intensity images. DOPU images were then
synthesized by the neural network, and the clinical findings from ground truth
DOPU and synthesized DOPU were compared. There is a good agreement in the
findings for RPE abnormalities: recall was 0.869 and precision was 0.920 for 20
cases with retinal diseases. In five cases of healthy volunteers, no
abnormalities were found in either the synthesized or ground truth DOPU images.
The proposed neural-network-based DOPU synthesis method demonstrates the
potential of extending the features of retinal non-PS OCT
Clinical prototype of pigment and flow imaging optical coherence tomography for posterior eye investigation
Measurements of the randomness of polarization (RP) obtained using polarization-sensitive optical coherence tomography (PS-OCT) are applied in several applications, and RP is attractive for posterior eye imaging. The addition of RP without retardation requires a minimal extension to standard OCT; therefore, we developed a prototype OCT system with a simplified scheme for RP measurement. A compact polarization-diversity receiver module is the only required hardware extension to a standard OCT system. All components were packed into the retinal scanning head. The degree-of-polarization uniformity and complex-decorrelation based OCT angiography were calculated using noise-corrected algorithms that accounted for the depth-dependent noise power. The structure, melanin, and blood flow distribution imaging of in vivo human eyes were demonstrated. Pathological eye imaging shows potential applications for combinations of these contrasts
Pixel-wise segmentation of severely pathologic retinal pigment epithelium and choroidal stroma using multi-contrast Jones matrix optical coherence tomography
Tissue segmentation of retinal optical coherence tomography (OCT) is widely used in ophthalmic diagnosis. However, its performance in severe pathologic cases is still insufficient. We propose a pixel-wise segmentation method that uses the multi-contrast measurement capability of Jones matrix OCT (JM-OCT). This method is applicable to both normal and pathologic retinal pigment epithelium (RPE) and choroidal stroma. In this method, “features,” which are sensitive to specific tissues of interest, are synthesized by combining the multi-contrast images of JM-OCT, including attenuation coefficient, degree-of-polarization-uniformity, and OCT angiography. The tissue segmentation is done by simple thresholding of the feature. Compared with conventional segmentation methods for pathologic maculae, the proposed method is less computationally intensive. The segmentation method was validated by applying it to images from normal and severely pathologic cases. The segmentation results enabled the development of several types of en face visualizations, including melano-layer thickness maps, RPE elevation maps, choroidal thickness maps, and choroidal stromal attenuation coefficient maps. These facilitate close examination of macular pathology. The melano-layer thickness map is very similar to a near infrared fundus autofluorescence image, so the map can be used to identify the source of a hyper-autofluorescent signal
Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment
The purpose of this study was to evaluate focal damage in the retinal pigment epithelium (RPE) layer in serous retinal pigment epithelium detachment (PED) with multi-contrast optical coherence tomography (OCT), which is capable of simultaneous measurement of OCT angiography, polarization-sensitive OCT and standard OCT images. We evaluated 37 eyes with age-related macular degeneration that had serous PED. Focal RPE damage was indicated by hyper-transmission beneath the RPE-Bruch’s membrane band in standard OCT images. Distribution of RPE melanin was calculated using the dataset from multi-contrast OCT. Twenty-four points with hyper-transmission were detected in 21 of the 37 eyes. Standard OCT images failed to show disruption of the RPE-Bruch’s membrane band at 5 of the 24 hyper-transmission points. Conversely, multi-contrast OCT images clearly showed melanin defects in the RPE-Bruch’s membrane band at all points. Areas of melanin defects with disruption of the RPE-Bruch’s membrane band were significantly larger than those without disruption. The volume of intraretinal hyper-reflective foci was significantly larger in eyes with hyper-transmission than that in eyes without hyper-transmission. Multi-contrast OCT is more sensitive than standard OCT for displaying changes at the RPE-Bruch’s membrane band when there are small areas of RPE damage
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
Birefringence-derived artifact in optical coherence tomography imaging of the lamina cribrosa in eyes with glaucoma
Abstract We investigated birefringence-derived artifacts that potentially mimic focal defects of the lamina cribrosa (focal LC defects) in optical coherence tomography (OCT) imaging of eyes with glaucoma. This study included 74 eyes of 48 patients with glaucoma. Five horizontal line B-scan images of the optic disc were obtained using commercial swept-source OCT. From a dataset of prototype swept-source polarization-diversity OCT, we calculated the following types of OCT images: polarization-dependent, polarization-dependent attenuation-coefficient, polarization-independent, and polarization-independent attenuation-coefficient. We assessed the commercial OCT images for the presence of birefringence-derived artifacts by comparison with the polarization-diversity OCT images. Commercial OCT showed suggestive findings of focal LC defects in 17 of 74 eyes. Reevaluation using polarization-independent OCT revealed that the focal LC defects in one of 17 eyes (5.9%) were actually birefringence-derived artifacts. This study demonstrated the existence of birefringence-derived artifacts mimicking focal LC defects in commercial OCT imaging and indicated that polarization-diversity OCT is an effective tool to evaluate the presence of these artifacts