15 research outputs found

    The immunotherapy potential of agonistic anti-CD137 (4-1BB) monoclonal antibodies for malignancies and chronic viral diseases

    Get PDF
    Pharmacological intervention on the immune system to achieve more intense lymphocyte responses has potential application in tumour immunology and in the treatment of chronic viral diseases. Immunostimulating monoclonal antibodies are defined as a new family of drugs that augment cellular immune responses. They interact as artificial ligands with functional proteins of the immune system, either activating or inhibiting their functions. There are humanized monoclonal antibodies directed to the inhibitory receptor CD152 (CTLA-4) that are being tested in clinical trials with evidence of antitumoural activity. As a drawback, anti-CTLA-4 monoclonal antibodies induce severe autoimmunity reactions in a fraction of the patients. Anti-CD137 monoclonal antibodies have the ability to induce potent immune responses mainly mediated by cytotoxic lymphocytes with the result of frequent complete tumour eradications in mice. Comparative studies in experimental models indicate that the antitumour activity of anti-CD137 monoclonal antibodies is superior to that of anti-CD152. CD137 (4-1BB) is a leukocyte differentiation antigen selectively expressed on the surface of activated T and NK lymphocytes, as well as on dendritic cells. Monoclonal antibodies acting as artificial stimulatory ligands of this receptor (anti-CD137 agonist antibodies) enhance cellular antitumoural and antiviral immunity in a variety of mouse models. Paradoxically, anti-CD137 monoclonal antibodies are therapeutic or preventive in the course of model autoimmune diseases in mice. In light of these experimental results, a number of research groups have humanized antibodies against human CD137 and early clinical trials are about to start

    Recombinant adenoviral vectors turn on the type I interferon system without inhibition of transgene expression and viral replication

    Get PDF
    Recombinant adenovirus administration gives rise to transgene-independent effects caused by the ability of the vector to activate innate immunity mechanisms. We show that recombinant adenoviruses encoding reporter genes trigger IFN-alpha and IFN-beta transcription from both plasmacytoid and myeloid mouse dendritic cells. Interestingly, IFN-beta and IFN-alpha5 are the predominant transcribed type I IFN genes both in vitro and in vivo. In human peripheral blood leukocytes type I IFNs are induced by adenoviral vectors, with a preponderance of IFN-beta together with IFN-alpha1 and IFN-alpha5 subtypes. Accordingly, functional type I IFN is readily detected in serum samples from human cancer patients who have been treated intratumorally with a recombinant adenovirus encoding thymidine kinase. Despite inducing functional IFN-alpha release in both mice and humans, gene transfer by recombinant adenoviruses is not interfered with by type I IFNs either in vitro or in vivo. Moreover, IFN-alpha does not impair replication of wild-type adenovirus. As a consequence, cancer gene therapy strategies with defective or replicative-competent adenoviruses are not expected to be hampered by the effect of the type I IFNs induced by the vector itself. However, type I IFN might modulate antitumor and antiadenoviral immune responses and thus influence the outcome of gene immunotherapy

    Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires Batf3-dependent dendritic cells

    Get PDF
    Weak and ineffective antitumor cytotoxic T lymphocyte (CTL) responses can be rescued by immunomodulatory mAbs targeting PD-1 or CD137. Using Batf3−/− mice, which are defective for cross-presentation of cell-associated antigens, we show that BATF3-dependent dendritic cells (DC) are essential for the response to therapy with anti-CD137 or anti–PD-1 mAbs. Batf3−/− mice failed to prime an endogenous CTL-mediated immune response toward tumor-associated antigens, including neoantigens. As a result, the immunomodulatory mAbs could not amplify any therapeutically functional immune response in these mice. Moreover, administration of systemic sFLT3L and local poly-ICLC enhanced DC-mediated cross-priming and synergized with anti–CD137- and anti–PD-1–mediated immunostimulation in tumor therapy against B16-ovalbumin–derived melanomas, whereas this function was lost in Batf3−/− mice. These experiments show that cross-priming of tumor antigens by FLT3L- and BATF3-dependent DCs is crucial to the efficacy of immunostimulatory mAbs and represents a very attractive point of intervention to enhance their clinical antitumor effects

    Innate functions of immunoglobulin M lessen liver gene transfer with helper-dependent adenovirus

    No full text
    The immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA) vector than those of WT mice. This effect was T-cell independent as shown in athymic mice. Passive transfer of the serum from adenovirus-naĂŻve WT to Rag1KO mice resulted in a reduction in gene transfer that was traced to IgM purified from serum of adenovirus-naĂŻve mice. To ascribe the gene transfer inhibition activity to either adenoviral antigen-specific or antigen-unspecific functions of IgM, we used a monoclonal IgM antibody of unrelated specificity. Both the polyclonal and the irrelevant monoclonal IgM inhibited gene transfer by the HDA vector to either cultured hepatocellular carcinoma cells or to the liver of mice in vivo. Adsorption of polyclonal or monoclonal IgMs to viral capsids was revealed by ELISAs on adenovirus-coated plates. These observations indicate the existence of an inborn IgM mechanism deployed against a prevalent virus to reduce early post-infection viremia. In conclusion, innate IgM binding to adenovirus serotype-5 capsids restrains gene-transfer and offers a mechanism to be targeted for optimization of vector dosage in gene therapy with HDA vectors

    PET imaging of thymidine kinase gene expression in the liver of non-human primates following systemic delivery of an adenoviral vector

    No full text
    Non-invasive in vivo imaging of transgene expression is currently providing very important means to optimize gene therapy regimes. Results in non-human primates are considered the most predictive models for the outcome in patients. In this study, we have documented that tumour and primary cell lines from human and non-human primates are comparably gene-transduced in vitro by serotype 5 adenovirus expressing HSV1-thymidine kinase. Transgene expression can be quantified in human and monkey cultured cells by positron emission tomography (PET) imaging when transduced cells are incubated with a fluoride-18 labelled penciclovir analogue. In our hands, PET images of cell cultures estimate the number of transduced cells rather than intensity of transgene expression once a threshold of TK per cell is reached. Interestingly, in vivo systemic administration of a clinical grade recombinant adenovirus expressing TK into macaques gives rise to an intense retention of the radiotracer in the liver parenchyma, providing an experimental system to visualize transgene expression that ought to be similar in human and macaques. Such imaging methodology might contribute to improve strategies based on adenoviral vectors

    Cellular liaisons of natural killer lymphocytes in immunology and immunotherapy of cancer.

    No full text
    There is compelling evidence for the role of natural killer (NK) cells in tumor immunosurveillance and their beneficial effects on many experimentally successful immunotherapy strategies. NK cells mediate cell contact-dependent cellular cytotoxicity and produce pro-inflammatory cytokines, but do not rearrange antigen receptors. Their activation depends on various germline-encoded receptors, including CD16, which mediates recognition of antibody-coated target cells. NK cytotoxicity is checked by a repertoire of inhibitory receptors that scan adequate expression of major histocompatibility complex class I molecules on the potential target cell. Functional cross-talk of NK and dendritic cells suggests a critical role for NK cells in the initiation and regulation of cellular immunity. Considerable knowledge on the molecular basis of NK recognition/activation contrasts with a lack of successful translational research on these matters. However, there is plenty of opportunity for targeted intervention of inhibitory/activatory surface receptors and for adoptive cell therapy with autologous or allogeneic NK cells

    Intratumoral injection of interferon-α and systemic delivery of agonist anti-CD137 monoclonal antibodies synergize for immunotherapy

    No full text
    CD137 artificial costimulation results in complete tumor rejection in several mouse models. Type I interferons (IFN) exert antitumor effects through an array of molecular functions on malignant cells, tumor stroma and immune system cells. The fact that agonist anti-CD137 mAb induce tumor regressions in mice deficient in the unique receptor for Type I IFNs (IFNAR(-/-) ) indicated potential for treatment combinations. Indeed, combination of intratumor injections of mouse IFN-α and intraperitoneal injections of anti-CD137 mAb synergized as seen on subcutaneous lesions derived from the MC38 colon carcinoma, which is resistant to each treatment if given separately. Therapeutic activity was achieved both against lesions directly injected with IFN-α and against distant concomitant tumors. Experiments in bone marrow chimeras prepared with IFNAR(-/-) and WT mice concluded that expression of the receptor for Type I interferons is mainly required on cells of the hematopoietic compartment. Synergistic effects correlated with a remarkable cellular hyperplasia of the tumor draining lymph nodes (TDLNs). Enlarged TDLNs contained more plasmacytoid and conventional dendritic cells (DC) that more readily cross-presented. Importantly, numbers of both DC subtypes inversely correlated with the tumor size. Numbers of CD8 T cells specific for a dominant tumor antigen were increased at TDLNs by each separate treatment but only with slight augments due to the combination. Combined antitumor effects of the therapeutic strategy were also seen on subcutaneous TC-1 tumors established for 24 days before treatment onset. The described strategy is realistic because (i) agents of each kind are clinically available and (ii) equivalent procedures in humans are feasible

    Interleukin-15 liver gene transfer increases the number and function of IKDCs and NK cells.

    No full text
    The surface phenotype CD3-NK1.1+DX5+CD11c(int)B220+GR1- has been recently ascribed to a novel subset of mouse leukocytes termed interferon (IFN)-producing killer dendritic cells (IKDCs) that shares functions with natural killer (NK) cells and DCs. Interleukin-15 (IL-15) is critical for NK cells but its relationship with IKDC remained unexplored. An expression cassette encoding human IL-15 (hIL-15) has been transferred by hydrodynamic injection into the liver of mice, resulting in transient expression of the cytokine that is detectable during the first 48 h. hIL-15 hydrodynamic gene transfer resulted in an expansion of NK cells and IKDCs. Relative expansions of IKDCs were more dramatic in the IL-15 gene-transferred hepatic tissue than in the spleen. Adoptively transferred DX5+ cells comprising both NK cells and IKDCs proliferated in response to hydrodynamic injection of hIL-15, indicating that quantitative increases are at least in part the result of proliferation from already differentiated cells. Expansion is accompanied by enhanced cytolytic activity and increased expression of TRAIL and CD137 (4-1BB), without augmenting interferon-gamma production. The effects of a single hydrodynamic injection surpassed those of two intraperitoneal doses of the recombinant protein. The novel functional link between circulating IL-15 and IKDCs opens new possibilities to study the biology and applications of this minority cell subset

    Interleukin-15 liver gene transfer increases the number and function of IKDCs and NK cells.

    No full text
    The surface phenotype CD3-NK1.1+DX5+CD11c(int)B220+GR1- has been recently ascribed to a novel subset of mouse leukocytes termed interferon (IFN)-producing killer dendritic cells (IKDCs) that shares functions with natural killer (NK) cells and DCs. Interleukin-15 (IL-15) is critical for NK cells but its relationship with IKDC remained unexplored. An expression cassette encoding human IL-15 (hIL-15) has been transferred by hydrodynamic injection into the liver of mice, resulting in transient expression of the cytokine that is detectable during the first 48 h. hIL-15 hydrodynamic gene transfer resulted in an expansion of NK cells and IKDCs. Relative expansions of IKDCs were more dramatic in the IL-15 gene-transferred hepatic tissue than in the spleen. Adoptively transferred DX5+ cells comprising both NK cells and IKDCs proliferated in response to hydrodynamic injection of hIL-15, indicating that quantitative increases are at least in part the result of proliferation from already differentiated cells. Expansion is accompanied by enhanced cytolytic activity and increased expression of TRAIL and CD137 (4-1BB), without augmenting interferon-gamma production. The effects of a single hydrodynamic injection surpassed those of two intraperitoneal doses of the recombinant protein. The novel functional link between circulating IL-15 and IKDCs opens new possibilities to study the biology and applications of this minority cell subset

    Immunotherapy and immunoescape in colorectal cancer

    No full text
    Immunotherapy encompasses a variety of interventions and techniques with the common goal of eliciting tumor cell destructive immune responses. Colorectal carcinoma often presents as metastatic disease that impedes curative surgery. Novel strategies such as active immunization with dendritic cells (DCs), gene transfer of cytokines into tumor cells or administration of immunostimulatory monoclonal antibodies (such as anti-CD137 or anti-CTLA-4) have been assessed in preclinical studies and are at an early clinical development stage. Importantly, there is accumulating evidence that chemotherapy and immunotherapy can be combined in the treatment of some cases with colorectal cancer, with synergistic potentiation as a result of antigens cross-presented by dendritic cells and/or elimination of competitor or suppressive T lymphocyte populations (regulatory T-cells). However, genetic and epigenetic unstable carcinoma cells frequently evolve mechanisms of immunoevasion that are the result of either loss of antigen presentation, or an active expression of immunosuppressive substances. Some of these actively immunosuppressive mechanisms are inducible by cytokines that signify the arrival of an effector immune response. For example, induction of 2, 3 indoleamine dioxygenase (IDO) by IFNgamma in colorectal carcinoma cells. Combinational and balanced strategies fostering antigen presentation, T-cell costimulation and interference with immune regulatory mechanisms will probably take the stage in translational research in the treatment of colorectal carcinoma
    corecore