29 research outputs found

    Patterns of convection in rotating spherical shells

    Full text link
    Patterns of convection in internally heated, self-gravitating rotating spherical fluid shells are investigated through numerical simulations. While turbulent states are of primary interest in planetary and stellar applications the present paper emphasizes more regular dynamical features at Rayleigh numbers not far above threshold which are similar to those which might be observed in laboratory or space experiments. Amplitude vacillations and spatial modulations of convection columns are common features at moderate and large Prandtl numbers. In the low Prandtl number regime equatorially attached convection evolves differently with increasing Rayleigh number and exhibits an early transition into a chaotic state. Relationships of the dynamical features to coherent structures in fully turbulent convection states are emphasized

    Thermal aspects of particle engulfment by a solidifying front

    No full text
    The solidification front under pushing conditions as well as the changes in shape that take place during the engulfment process are investigated for polyamide and steel spheres in an ice-water system. The examination of all subsequent stages of trapping make evident that thermal effects are of prime importance in the interface shape, when large spheres (size of the order of some millimeters) are considered.info:eu-repo/semantics/publishe

    Effet d'un gradient de concentration sur un Ă©coulement thermocapillaire dans une solution aqueuse d'alcool gras

    No full text
    Le modÚle présenté rend compte du sens inattendu de l'écoulement observé à la surface libre de solutions aqueuses d'alcools gras en présence d'un gradient horizontal de température. L'inversion du sens de l'écoulement que l'on détecte dans les expériences est attribuée au gradient de concentration, induit par évaporation-condensation de l'alcool

    Mesure par interférométrie laser du mouvement d'une particule proche d'une paroi

    No full text
    An experimental technique based on laser interferometry is used to obtain the displacement of a sphere towards a plane wall in a viscous fluid : it consists in inserting the sphere in an interferometric system, in such a way that the displacement of the sphere changes the state of interference. An important feature of the setup is that the shape, the roughness, and the positioning of the sphere in the optical path are relatively uncritical. The spheres used in the experiment are bearing balls, 4 and 5×10−35 \times 10^{-3} m in diameter. The accuracy on the sphere displacement is of the order of 2×10−82 \times 10^{-8} m. The interference signal is digitalized and stored in a microcomputer. The data are then processed to yield the friction coefficient fzzTf^{\rm T}_{\rm zz} of the sphere in its motion very close to the wall. The variation of fzzTf^{\rm T}_{\rm zz} with the non-dimensional gap Δ\varepsilon (ratio of the gap to the sphere radius) show three regions: (i) One in which a is small but at least 10 times larger than the non-dimensional rugosity (ratio of the scale of rugosity to the sphere radius) ; there is then a very good agreement with the result valid for a smooth sphere fzzT=1/Δf^{\rm T}_{\rm zz} = 1/\varepsilon from lubrication theory. (ii) When Δ\varepsilon decreases to the order of the non-dimensional rugosity, the friction coefficient is then smaller than 1/Δ1/\varepsilon. The technique thus opens a way to study the effects of rugosity in hydrodynamics. (iii) The technique allows to measure gaps of the order of 10−8^{-8} m and could thus be used in future studies of short ranges forces.On utilise une technique expĂ©rimentale basĂ©e sur l'interfĂ©romĂ©trie laser pour dĂ©terminer le dĂ©placement d'une sphĂšre s'approchant d'une paroi plane dans un fluide visqueux: la technique consiste Ă  insĂ©rer la sphĂšre dans un systĂšme interfĂ©romĂ©trique, de façon que son dĂ©placement change l'Ă©tat d'interfĂ©rence dĂ©tectĂ©. Une particularitĂ© importante du montage utilisĂ© est que la forme, l'Ă©tat de surface, le positionnement, et l'alignement de la sphĂšre dans le montage optique sont relativement peu critiques. Les sphĂšres utilisĂ©es sont des billes de roulements Ă  billes, de 4 et 5×10−35 \times 10^{-3} m de diamĂštre. La prĂ©cision sur le dĂ©placement de la sphĂšre est de l'ordre de 2×10−82 \times 10^{-8} m. Le signal d'interfĂ©rence est digitalisĂ© et stockĂ© dans un micro-ordinateur. Le traitement des donnĂ©es permet alors d'obtenir le coefficient de frottement fzzTf^{\rm T}_{\rm zz} de la sphĂšre en mouvement tout prĂšs de la paroi. La variation de fzzTf^{\rm T}_{\rm zz} avec l'intervalle sans dimension Δ\varepsilon (rapport de l'intervalle entre la sphĂšre et la paroi au rayon de la sphĂšre) permet de distinguer trois rĂ©gions: (i) Une rĂ©gion oĂč Δ\varepsilon est petit mais au moins 10 fois plus grand que la rugositĂ© non dimensionnelle (rapport de l'Ă©chelle de la rugositĂ© au rayon de la sphĂšre) ; le rĂ©sultat expĂ©rimental est alors en trĂšs bon accord avec la formule fzzT=1/Δf^{\rm T}_{\rm zz} = 1/\varepsilon dĂ©montrĂ©e en thĂ©orie de la lubrification, formule valable pour une sphĂšre lisse. (ii) Lorsque Δ\varepsilon dĂ©croĂźt pour devenir de l'ordre de grandeur de la rugositĂ© non dimensionnelle, le coefficient de frottement est alors infĂ©rieur Ă  Il E. La technique ouvre ainsi une nouvelle voie Ă  l'Ă©tude des effets de rugositĂ© en hydrodynamique. (iii) La technique permet de mesurer des intervalles de l'ordre de 10−8^{-8} m et pourrait ainsi ĂȘtre utilisĂ©e dans l'Ă©tude des forces Ă  courte portĂ©e

    Wetting effects on nylon spheres engulfment in ice

    No full text
    Rapport nr ESA-SP 333info:eu-repo/semantics/publishe

    Evaporating droplets

    No full text
    International audienceThe evaporation of droplets on a substrate that is wetting to the liquid is studied. The radius R(t)R(t) of the droplet is followed in time until it reaches zero. If the evaporation is purely diffusive, R∝t0 − tR \propto \sqrt{t_0\,{-}\,t} is expected, where t0t_0 is the time at which the droplet vanishes; this is found for organic liquids, but water has a different exponent. We show here that the difference is likely to be due to the fact that water vapour is lighter than air, and the vapour of other liquids more dense. If we carefully confine the water so that a diffusive boundary layer may develop, we retrieve R(t)∝t0 − tR(t) \propto \sqrt{t_0\,{-}\,t}. On the other hand, if we force convection for an organic liquid, we retrieve the anomalous exponent for water
    corecore