5 research outputs found

    <i>ATP5PO </i>levels regulate enteric nervous system development in zebrafish, linking Hirschsprung disease to Down Syndrome

    Get PDF
    Hirschsprung disease (HSCR) is a complex genetic disorder characterized by the absence of enteric nervous system (ENS) in the distal region of the intestine. Down Syndrome (DS) patients have a &gt;50-fold higher risk of developing HSCR than the general population, suggesting that overexpression of human chromosome 21 (Hsa21) genes contribute to HSCR etiology. However, identification of responsible genes remains challenging. Here, we describe a genetic screening of potential candidate genes located on Hsa21, using the zebrafish. Candidate genes were located in the DS-HSCR susceptibility region, expressed in the human intestine, were known potential biomarkers for DS prenatal diagnosis, and were present in the zebrafish genome. With this approach, four genes were selected: RCAN1, ITSN1, ATP5PO and SUMO3. However, only overexpression of ATP5PO, coding for a component of the mitochondrial ATPase, led to significant reduction of ENS cells. Paradoxically, in vitro studies showed that overexpression of ATP5PO led to a reduction of ATP5PO protein levels. Impaired neuronal differentiation and reduced mitochondrial ATP production, were also detected in vitro, after overexpression of ATP5PO in a neuroblastoma cell line. Finally, epistasis was observed between ATP5PO and ret, the most important HSCR gene. Taken together, our results identify ATP5PO as the gene responsible for the increased risk of HSCR in DS patients in particular if RET variants are also present, and show that a balanced expression of ATP5PO is required for normal ENS development.</p

    Validation of a Combined Transcriptome and T Cell Receptor Alpha/Beta (TRA/TRB) Repertoire Assay at the Single Cell Level for Paucicellular Samples

    Get PDF
    Transcriptomics can be combined with TRA and TRB clonotype analysis at the single cell level. The aim of this study was to validate this approach on the ICELL8 Single-Cell system and to evaluate its usefulness to analyse clinical paucicellular samples. For this purpose, we carefully select

    Circulating TP53 mutations are associated with early tumor progression and poor survival in pancreatic cancer patients treated with FOLFIRINOX

    Get PDF
    Background: Biomarkers predicting treatment response may be used to stratify pancreatic ductal adenocarcinoma (PDAC) patients for therapy. The aim of this study was to identify circulating tumor DNA (ctDNA) mutations that associate with tumor progression during FOLFIRINOX chemotherapy, and overall survival (OS). Methods: Circulating cell-free DNA was analyzed with a 57 gene next-generation sequencing panel using plasma samples of 48 PDAC patients of all disease stages. Patients received FOLFIRINOX as initial treatment. Chemotherapy response was determined on CT scans as disease control (n = 30) or progressive disease (n = 18) within eight cycles of FOLFIRINOX, based on RECIST 1.1 criteria. Results: Detection of a TP53 ctDNA mutation before start of FOLFIRINOX [odds ratio (OR) 10.51, 95% confidence interval (CI) 1.40-79.14] and the presence of a homozygous TP53 Pro72Arg germline variant (OR 6.98, 95% CI 1.31-37.30) were predictors of early tumor progression during FOLFIRINOX in multivariable analysis. Five patients presented with the combination of a TP53 ctDNA mutation before start of FOLFIRINOX and the homozygous Pro72Arg variant. All five patients showed progression during FOLFIRINOX. The combination of the TP53 mutation and TP53 germline variant was associated with shorter survival (median OS 4.4 months, 95% CI 2.6-6.2 months) compared with patients without any TP53 alterations (median OS 13.0 months, 95% CI 8.6-17.4 months). Conclusion: The combination of a TP53 ctDNA mutation before start of FOLFIRINOX and a homozygous TP53 Pro72Arg variant is a promising biomarker, associated with early tumor progression during FOLFIRINOX and poor OS. The results of this exploratory study need to be validated in an independent cohort.Surgical oncolog

    High-throughput and affordable genome-wide methylation profiling of circulating cell-free DNA by methylated DNA sequencing (MeD-seq) of LpnPI digested fragments

    Get PDF
    Background: DNA methylation detection in liquid biopsies provides a highly promising and much needed means for real-time monitoring of disease load in advanced cancer patient care. Compared to the often-used somatic mutations, tissue- and cancer-type specific epigenetic marks affect a larger part of the cancer genome and generally have a high penetrance throughout the tumour. Here, we describe the successful application of the recently described MeD-seq assay for genome-wide DNA methylation profiling on cell-free DNA (cfDNA). The compatibility of the MeD-seq assay with different types of blood collection tubes, cfDNA input amounts, cfDNA isolation methods, and vacuum concentration of samples was evaluated using plasma from both metastatic cancer patients and healthy blood donors (HBDs). To investigate the potential value of cfDNA methylation profiling for tumour load monitoring, we profiled paired samples from 8 patients with resectable colorectal liver metastases (CRLM) before and after surgery. Results: The MeD-seq assay worked on plasma-derived cfDNA from both EDTA and CellSave blood collection tubes when at least 10 ng of cfDNA was used. From the 3 evaluated cfDNA isolation methods, both the manual QIAamp Circulating Nucleic Acid Kit (Qiagen) and the semi-automated Maxwell® RSC ccfDNA Plasma Kit (Promega) were compatible with MeD-seq analysis, whereas the QiaSymphony DSP Circulating DNA Kit (Qiagen) yielded significantly fewer reads when compared to the QIAamp kit (p < 0.001). Vacuum concentration of samples before MeD-seq analysis was possible with samples in AVE buffer (QIAamp) or water, but yielded inconsistent results for samples in EDTA-containing Maxwell buffer. Principal component analysis showed that pre-surgical samples from CRLM patients were very distinct from HBDs, whereas post-surgical samples were more similar. Several described methylation markers for colorectal cancer monitoring in liquid biopsies showed differential methylation between pre-surgical CRLM samples and HBDs in our data, supporting the validity of our approach. Results for MSC, ITGA4, GRIA4, and EYA4 were validated by quantitative methylation specific PCR. Conclusions: The MeD-seq assay provides a promising new method for cfDNA methylation profiling. Potential future applications of the assay include marker discovery specifically for liquid biopsy analysis as well as direct use as a disease load monitoring tool in advanced cancer patients
    corecore