2 research outputs found

    Visual Performance of Fermented Whey with the Addition of Pectin and Chitosan During 24 Hours Storage at Refrigerator Temperature

    Get PDF
    Fermentation of whey often faces problems with the product clarity due to the milk solids residue from previous cheese making process. The aim of this research was to determine the clarity and the performance of fermented whey precipitation process in the presence of pectin and chitosan as coagulant. Whey was initially pasteurized and added with pectin and chitosan prior to fermentation with mixed starter culture. Fermented whey was stored in refrigerator for 24 hours. Data were obtained using visual analysis by 15 semi-trained panelists. Qualitative scorings were given by (+) or (-) markings from the specified criteria. The data were compiled in a table, showcasing the observed characteristics at the initial and final states of fermentation. The results showed that the highest clarity (+++) was achieved by the fermented whey with the addition of pectin, as well as most stable sediment performance (+++) was also produced by pectin treatment. However, while fermented whey with the addition of pectin exhibited clarity, the level of clarity achieved by fermented whey with the addition of chitosan was superior

    Land Use Dynamics and Impact on Regional Climate Post-Tehri Dam in the Bhilangana Basin, Garhwal Himalaya

    No full text
    Land use and land cover (LULC) changes are a dynamic process determined by natural factors as well as the degree of human interaction in spatial and temporal perspectives. The present study focuses on analysing the LULC changes in the Bhilangana basin post-Tehri dam construction in the Garhwal Himalaya. Landsat series satellite images were used for three time periods to quantify spatial and temporal changes in the LULC using unsupervised classification techniques. The calculations of the areal coverage and change detection were carried out using the ArcGIS 10.3 software. The study finds that LULC changes were observed in the area surrounding the Tehri reservoir. The area under forest cover decreased by 54.71 km2, which is −5.7% of the geographical area, followed by agricultural land by 6.06 km2 (−0.4%) and scrubland and grass cover by 4.23 km2 (−0.28%) during the decade 2000 to 2010. Gradually, due to compensatory afforestation, forest cover increased by 5.65% in the period 2010–2020. A significant relationship with climatic variability is also established with LULC change in the region. The presence of a large water surface at a high altitude modified the albedo and air temperature and increased the atmospheric humidity and precipitation pattern. This study would be vital in understanding the climatic variability in the Himalayas and its impact on the community, environment and climate
    corecore