43 research outputs found

    Doseā€“responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors

    Get PDF
    The non-cancer mortality data for cerebrovascular disease (CVD) and cardiovascular diseases from Report 13 on the atomic bomb survivors published by the Radiation Effects Research Foundation were analysed to investigate the doseā€“response for the influence of radiation on these detrimental health effects. Various parametric and categorical models (such as linear-no-threshold (LNT) and a number of threshold and step models) were analysed with a statistical selection protocol that rated the model description of the data. Instead of applying the usual approach of identifying one preferred model for each data set, a set of plausible models was applied, and a sub-set of non-nested models was identified that all fitted the data about equally well. Subsequently, this sub-set of non-nested models was used to perform multi-model inference (MMI), an innovative method of mathematically combining different models to allow risk estimates to be based on several plausible doseā€“response models rather than just relying on a single model of choice. This procedure thereby produces more reliable risk estimates based on a more comprehensive appraisal of model uncertainties. For CVD, MMI yielded a weak doseā€“response (with a risk estimate of about one-third of the LNT model) below a step at 0.6Ā Gy and a stronger doseā€“response at higher doses. The calculated risk estimates are consistent with zero risk below this threshold-dose. For mortalities related to cardiovascular diseases, an LNT-type doseā€“response was found with risk estimates consistent with zero risk below 2.2Ā Gy based on 90% confidence intervals. The MMI approach described here resolves a dilemma in practical radiation protection when one is forced to select between models with profoundly different doseā€“responses for risk estimates

    Hematological Changes as Prognostic Indicators of Survival: Similarities Between Gottingen Minipigs, Humans, and Other Large Animal Models

    Get PDF
    The animal efficacy rule addressing development of drugs for selected disease categories has pointed out the need to develop alternative large animal models. Based on this rule, the pathophysiology of the disease in the animal model must be well characterized and must reflect that in humans. So far, manifestations of the acute radiation syndrome (ARS) have been extensively studied only in two large animal models, the non-human primate (NHP) and the canine. We are evaluating the suitability of the minipig as an additional large animal model for development of radiation countermeasures. We have previously shown that the Gottingen minipig manifests hematopoietic ARS phases and symptoms similar to those observed in canines, NHPs, and humans.We establish here the LD50/30 dose (radiation dose at which 50% of the animals succumb within 30 days), and show that at this dose the time of nadir and the duration of cytopenia resemble those observed for NHP and canines, and mimic closely the kinetics of blood cell depletion and recovery in human patients with reversible hematopoietic damage (H3 category, METREPOL approach). No signs of GI damage in terms of diarrhea or shortening of villi were observed at doses up to 1.9 Gy. Platelet counts at days 10 and 14, number of days to reach critical platelet values, duration of thrombocytopenia, neutrophil stress response at 3 hours and count at 14 days, and CRP-to-platelet ratio were correlated with survival. The ratios between neutrophils, lymphocytes and platelets were significantly correlated with exposure to irradiation at different time intervals.As a non-rodent animal model, the minipig offers a useful alternative to NHP and canines, with attractive features including ARS resembling human ARS, cost, and regulatory acceptability. Use of the minipig may allow accelerated development of radiation countermeasures
    corecore