146 research outputs found

    Pilot Study of Delayed ICOS/ICOS-L Blockade With alphaCD40 to Modulate Pathogenic Alloimmunity in a Primate Cardiac Allograft Model

    Get PDF
    Background: Inducible costimulator (ICOS) is rapidly upregulated with T-cell stimulation and may represent an escape pathway for T-cell costimulation in the setting of CD40/CD154 costimulation blockade. Induction treatment exhibited no efficacy in a primate renal allograft model, but rodent transplant models suggest that the addition of delayed ICOS/ICOS-L blockade may prolong allograft survival and prevent chronic rejection. Here, we ask whether ICOS-Ig treatment, timed to anticipate ICOS upregulation, prolongs NHP cardiac allograft survival or attenuates pathogenic alloimmunity. Methods: Cynomolgus monkey heterotopic cardiac allograft recipients were treated with alphaCD40 (2C10R4, d0-90) either alone or with the addition of delayed ICOS-Ig (d63-110). Results: Median allograft survival was similar between ICOS-Ig + alphaCD40 (120 days, 120-125 days) and alphaCD40 (124 days, 89-178 days) treated animals, and delayed ICOS-Ig treatment did not prevent allograft rejection in animals with complete CD40 receptor coverage. Although CD4(+) TEM cells were decreased in peripheral blood (115 +/- 24) and mLNs (49 +/- 1.9%) during ICOS-Ig treatment compared with monotherapy (214 +/- 27%, P = 0.01; 72 +/- 9.9%, P = 0.01, respectively), acute and chronic rejection scores and kinetics of alloAb elaboration were similar between groups. Conclusions: Delayed ICOS-Ig treatment with the reagent tested is probably ineffective in modulating pathogenic primate alloimmunity in this model

    Brain Radiation Information Data Exchange (BRIDE): Integration of experimental data from low-dose ionising radiation research for pathway discovery

    Get PDF
    Background: The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. Results: We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains information from the literature as well as experimental information from transcriptomics and proteomics studies. It deploys a hybrid, distributed solution using both local storage and cloud technology. Conclusions: BRIDE can act as a knowledge broker for LDIR researchers, to facilitate molecular research on the systems biology of LDIR response in mammals. Its flexible design can capture a range of experimental information for genomics, epigenomics, transcriptomics, and proteomics. The data collection is available at:

    Fingerprinting the Substrate Specificity of M1 and M17 Aminopeptidases of Human Malaria, Plasmodium falciparum

    Get PDF
    Plasmodium falciparum, the causative agent of human malaria, expresses two aminopeptidases, PfM1AAP and PfM17LAP, critical to generating a free amino acid pool used by the intraerythrocytic stage of the parasite for proteins synthesis, growth and development. These exopeptidases are potential targets for the development of a new class of anti-malaria drugs.To define the substrate specificity of recombinant forms of these two malaria aminopeptidases we used a new library consisting of 61 fluorogenic substrates derived both from natural and unnatural amino acids. We obtained a detailed substrate fingerprint for recombinant forms of the enzymes revealing that PfM1AAP exhibits a very broad substrate tolerance, capable of efficiently hydrolyzing neutral and basic amino acids, while PfM17LAP has narrower substrate specificity and preferentially cleaves bulky, hydrophobic amino acids. The substrate library was also exploited to profile the activity of the native aminopeptidases in soluble cell lysates of P. falciparum malaria.This data showed that PfM1AAP and PfM17LAP are responsible for majority of the aminopeptidase activity in these extracts. These studies provide specific substrate and mechanistic information important for understanding the function of these aminopeptidases and could be exploited in the design of new inhibitors to specifically target these for anti-malaria treatment

    Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk

    Get PDF
    Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.125 and 0.5 Gy at 10 weeks of age, determined lens opacities for up to 2 years and compared it with overall survival, cytogenetic alterations and cancer development. The highest dose was significantly associated with increased body weight and reduced survival rate. Chromosomal aberrations in bone marrow cells showed a dose-dependent increase 12 months after irradiation. Pathological screening indicated a dose-dependent risk for several types of tumors. Scheimpflug imaging of the lens revealed a significant dose-dependent effect of 1% of lens opacity. Comparison of different biological end points demonstrated long-term effects of low-dose irradiation for several biological end points

    Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation

    Full text link

    Proteomics landscape of radiation-induced cardiovascular disease: Somewhere over the paradigm.

    No full text
    Introduction: Epidemiological studies clearly show that thoracic or whole body exposure to ionizing radiation increases the risk of cardiac morbidity and mortality. Radiation-induced cardiovascular disease (CVD) has been intensively studied during the last ten years but the underlying molecular mechanisms are still poorly understood. Areas covered: Heart proteomics is a powerful tool holding promise for the future research. The central focus of this review is to compare proteomics data on radiation-induced CVD with data arising from proteomics of healthy and diseased cardiac tissue in general. In this context we highlight common and unique features of radiation-related and other heart pathologies. Future prospects and challenges of the field are discussed. Expert commentary: Data from comprehensive cardiac proteomics have deepened the knowledge of molecular mechanisms involved in radiation-induced cardiac dysfunction. State-of-the-art proteomics has the potential to identify novel diagnostic and therapeutic markers of this disease

    Proteomics approaches to investigate cancer radiotherapy outcome: Slow train coming.

    No full text
    Radiotherapy represents an effective curative strategy that along with surgery and chemotherapy is traditionally used in cancer treatment. An optimal therapy delivers accurate radiation doses to tumour while protecting surrounding normal tissue. Although radiotherapy regimens have improved in recent years, tumour radioresistance and normal tissue toxicity remain major challenges that considerably contribute to the effectiveness of cancer therapy. These factors affect especially radiosensitive individuals in the treatment of whom the balance between effective tumour killing and adverse normal tissue late effects turns out to be problematic. Understanding molecular mechanisms involved in tumour and normal tissue response is essential in order to improve radiotherapy outcome in the field of personalised medicine. Alteration in the global proteome of cells and tissues truthfully reflects the changes in physiology and pathophysiology of biological samples. This makes proteomics analysis a powerful tool principally enabling identification of radioresistance biomarkers in cancer and sensitivity biomarkers in individuals. Yet, the use of proteomics in cancer therapy is still in its infancy and more research is needed to fulfil the great promise of this technique. The present review summarises recent proteomic-based studies searching for biomarkers for more accurate prediction of radiotherapeutic response in tumour and normal tissue

    Proteomics in radiation research: Present status and future perspectives.

    No full text
    Rapidly developing postgenome research has made proteins an attractive target for biological analysis. The well-established term of proteome is defined as the complete set of proteins expressed in a given cell, tissue or organism. Unlike the genome, a proteome is rapidly changing as it tends to adapt to microenvironmental signals. The systematic analysis of the proteome at a given time and state is referred to as proteomics. This technique provides information on the molecular and cellular mechanisms that regulate physiology and pathophysiology of the cell. Applications of proteome profiling in radiation research are increasing. However, the large-scale proteomics data sets generated need to be integrated into other fields of radiation biology to facilitate the interpretation of radiation-induced cellular and tissue effects. The aim of this review is to introduce the most recent developments in the field of radiation proteomics

    Qualitative and quantitative proteomic analysis of Formalin-Fixed Paraffin-Embedded (FFPE) tissue.

    No full text
    Formalin-fixed, paraffin-embedded (FFPE) tissue has recently gained interest as an alternative to fresh/frozen tissue for retrospective protein biomarker discovery. However, during the formalin fixation proteins undergo degradation and cross-linking, making conventional protein analysis technologies challenging. Cross-linking is even more challenging when quantitative proteome analysis of FFPE tissue is planned. The use of conventional protein labeling technologies on FFPE tissue has turned out to be problematic as the lysine residue labeling targets are frequently blocked by the formalin treatment. We have established a qualitative and quantitative proteomics analysis technique for FFPE tissues that combines label-free proteomic analysis with optimized protein extraction and separation conditions

    Quantitative proteomic analysis using formalin-fixed, paraffin-embedded (FFPE) human cardiac tissue.

    No full text
    Clinical tissue archives represent an invaluable source of biological information. Formalin-fixed, paraffin-embedded (FFPE) tissue can be used for retrospective investigation of biomarkers of diseases and prognosis.Recently, the number of studies using proteome profiling of samples from clinical archives has markedly increased. However, the application of conventional quantitative proteomics technologies remains a challenge mainly due to the harsh fixation process resulting in protein cross-linking and protein degradation. In the present chapter, we demonstrate a protocol for label-free proteomic analysis of FFPE tissue prepared from human cardiac autopsies. The data presented here highlight the applicability and suitability of FFPE heart tissue for understanding the molecular mechanism of cardiac injury using a proteomics approach
    • …
    corecore