2 research outputs found

    6 MV photon beam induced UV/VIS absorption of hema polymer gel

    Get PDF
    The aim of this study was to evaluate properties of normoxic polymer gel 2-Hydroxyethyl methacrylate monomer (HEMAG) as a point dosimeter by using optical properties evaluation techniques. HEMAG were prepared from seven different radiation dose within five different depths of HEMAG dosimeters. These HEMAG dosimeters were irradiated by linear accelerator with 6 MV photon beams. The absorption spectra were measured by using a UV-visible spectrophotometer in the wavelength range from 300 to 800 nm. Then, the data was analysed to determine the optical energy band gap (Eg) and Urbach’s energy (ΔE). The result showed that Eg and ΔE were dependent on radiation dose and percentage of depth dose (PDD). In additional, Eg with indirect transition of HEMAG decreased as radiation dose increased and increased with traversing of depth. ΔE of HEMAG increased as the dose increased and decreased with traversing depth of monomer. There was a shift in the Eg values towards lower energy as the dose increased and led to a shift of the ΔE value towards the higher energy with increasing dose. This observation supported the increase of structured disorder of the polymer with increasing radiation dose, which resulted in the lower energy transitions that was feasible and reduced the values of Eg. In conclusion, HEMAG has a potential to be used as a dosimeter at low radiation dose in the clinical radiotherapy

    Enhancements in 3D dosimetry measurement using polymer gel and MRI

    Get PDF
    The effects of varying the concentrations of cross-linker N, N-methyelene-bis-acrylamide (BIS) from 2% to 4%, and 2-hydroxyethylacrylate(HEA) monomer from 2% to 4% at 5% gelatin on the dose response of BIS–HEA–gelatin (BHEAG) aqueous polymer gel dosimeters have been studied using magnetic resonance imaging (MRI) for relaxation rate (R2) of water proton. The dosimeters were irradiated with 60Co teletherapy -ray source at a constant dose rate, receiving doses up to 30 Gy. The radiation polymerization occurs and increases with increasing initial dose. R2 is found to decrease mono-exponentially with depth inside the polymer gel and depend strongly upon the initial concentrations of co-monomers (HEA and BIS). Dose–depth map for BHEAG gel was determined for different concentrations of co-monomer (HEA and BIS). The percentage dose depth was also evaluated which leads to a good agreement with the ionization chamber measurements
    corecore