727 research outputs found

    Revisiting the intraperoxisomal pathway of mammalian PEX7

    Get PDF
    Newly synthesized peroxisomal proteins containing a cleavable type 2 targeting signal (PTS2) are transported to the peroxisome by a cytosolic PEX5-PEX7 complex. There, the trimeric complex becomes inserted into the peroxisomal membrane docking/translocation machinery (DTM), a step that leads to the translocation of the cargo into the organelle matrix. Previous work suggests that PEX5 is retained at the DTM during all the steps occurring at the peroxisome but whether the same applies to PEX7 was unknown. By subjecting different pre-assembled trimeric PEX5-PEX7-PTS2 complexes to in vitro co-import/export assays we found that the export competence of peroxisomal PEX7 is largely determined by the PEX5 molecule that transported it to the peroxisome. This finding suggests that PEX7 is also retained at the DTM during the peroxisomal steps and implies that cargo proteins are released into the organelle matrix by DTM-embedded PEX7. The release step does not depend on PTS2 cleavage. Rather, our data suggest that insertion of the trimeric PEX5-PEX7-PTS2 protein complex into the DTM is probably accompanied by conformational alterations in PEX5 to allow release of the PTS2 protein into the organelle matrix.This work was funded by FEDER funds through the Operational Competitiveness Programme, COMPETE,and by National Funds through FCT, Fundacao para a Ciencia e a Tecnologia, under the project FCOMP-01-0124-FEDER-022718 (Pest-C/SAU/LA0002/2011) and FCOMP-01-0124-FEDER-019731 (PTDC/BIABCM/118577/2010). T.A.R. and C.P.G were supported by Fundacao para a Ciencia e a Tecnologia,Programa Operacional Potencial Humano do QREN and Fundo Social Europeu

    Photoconfigurable, Cell-Remodelable Disulfide Cross-linked Hyaluronic Acid Hydrogels.

    Get PDF
    Dynamic photoresponsive synthetic hydrogels offer important advantages for biomaterials design, from the ability to cure hydrogels and encapsulate cells in situ to the light-mediated control of cell-spreading and tissue formation. We report the facile and effective photocuring and photoremodeling of disulfide-cross-linked hyaluronic acid hydrogels, based on photo-oxidation of corresponding thiol residues and their radical-mediated photodegradation. We find that the mechanical properties of disulfide hydrogels and the extent of their photoremodeling can be tuned by controlling the photo-oxidation and photodegradation reactions, respectively. This enables not only the photopatterning of the mechanical properties of hydrogels but also their self-healing and photomediated healing. Finally, we demonstrate the ability to encapsulate mesenchymal stromal cells within these materials and to regulate their protrusion and spreading in 3D matrices by controlling the mechanical properties of the disulfide networks. Therefore, synthetically accessible photoconfigurable disulfide hydrogels offer interesting opportunities for the design of soft biomaterials and the regulation of cell encapsulation and matrix remodeling for tissue engineering

    A mechanistic perspective on pex1 and pex6, two aaa+ proteins of the peroxisomal protein import machinery

    Get PDF
    In contrast to many protein translocases that use ATP or GTP hydrolysis as the driving force to transport proteins across biological membranes, the peroxisomal matrix protein import machinery relies on a regulated self-assembly mechanism for this purpose and uses ATP hydrolysis only to reset its components. The ATP-dependent protein complex in charge of resetting this machinery—the Receptor Export Module (REM)—comprises two members of the “ATPases Associated with diverse cellular Activities” (AAA+) family, PEX1 and PEX6, and a membrane protein that anchors the ATPases to the organelle membrane. In recent years, a large amount of data on the structure/function of the REM complex has become available. Here, we discuss the main findings and their mechanistic implications.This work was financed by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project PTDC/BEX-BCM/2311/2014 (POCI-01-0145-FEDER-016613) and the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). This work is a result of the project NORTE-01-0145-FEDER-000008—Porto Neurosciences and Neurologic Disease Research Initiative at I3S, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). A.B.-B., A.G.P., M.J.F., T.F. and T.A.R. are supported by Fundação para a Ciência e Tecnologia, Programa Operacional Potencial Humano do QREN, and Fundo Social Europeu

    The N terminus of the peroxisomal cycling receptor, Pex5p, is required for redirecting the peroxisome-associated peroxin back to the cytosol

    Get PDF
    Most newly synthesized peroxisomal matrix proteins are transported to the organelle by Pex5p, a remarkable multidomain protein involved in an intricate network of transient protein-protein interactions. Presently, our knowledge regarding the structure/function of amino acid residues 118 to the very last residue of mammalian Pex5p is quite vast. Indeed, the cargo-protein receptor domain as well as the binding sites for several peroxins have all been mapped to this region of Pex5p. In contrast, structural/functional data regarding the first 117 amino acid residues of Pex5p are still scarce. Here we show that a truncated Pex5p lacking the first 110 amino acid residues (DeltaN110-Pex5p) displays exactly the peroxisomal import properties of the full-length peroxin implying that this N-terminal domain is involved neither in cargo-protein binding nor in the docking/translocation step of the Pex5p-cargo protein complex at the peroxisomal membrane. However, the ATP-dependent export step of DeltaN110-Pex5p from the peroxisomal membrane is completely blocked, a phenomenon that was also observed for a Pex5p version lacking just the first 17 amino acid residues but not for a truncated protein comprising amino acid residues 1-324 of Pex5p. By exploring the unique properties of DeltaN110-Pex5p, the effect of temperature on the import/export kinetics of Pex5p was characterized. Our data indicate that the export step of Pex5p from the peroxisomal compartment ( in contrast with its insertion into the organelle membrane) is highly dependent on the temperature

    Characterization and Vaccine Potential of Outer Membrane Vesicles from Photobacterium damselae subsp. piscicida

    Get PDF
    Photobacterium damselae subsp. piscicida (Phdp) is a Gram-negative fish pathogen with worldwide distribution and broad host specificity that causes heavy economic losses in aquaculture. Although Phdp was first identified more than 50 years ago, its pathogenicity mechanisms are not completely understood. In this work, we report that Phdp secretes large amounts of outer membrane vesicles (OMVs) when cultured in vitro and during in vivo infection. These OMVs were morphologically characterized and the most abundant vesicle-associated proteins were identified. We also demonstrate that Phdp OMVs protect Phdp cells from the bactericidal activity of fish antimicrobial peptides, suggesting that secretion of OMVs is part of the strategy used by Phdp to evade host defense mechanisms. Importantly, the vaccination of sea bass (Dicentrarchus labrax) with adjuvant-free crude OMVs induced the production of anti-Phdp antibodies and resulted in partial protection against Phdp infection. These findings reveal new aspects of Phdp biology and may provide a basis for developing new vaccines against this pathogen.This work was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020 Operational Program for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through Fundacao para a Ciencia e a Tecnologia/Ministerio da Ciencia, Tecnologia e Ensino Superior (FCT) in the framework of the project POCI-01-0145-FEDER-030018 (PTDC/CVT-CVT/30018/2017). This work also received funding from the European Union's Horizon Europe research and innovation program under grant agreement No. 101084651 (project IGNITION). Views and opinions expressed are those of the authors only and do not necessarily reflect those of the European Union. The European Union cannot be held responsible for them. AdV was funded by Portuguese national funds through the FCT-Fundacao para a Ciencia e a Tecnologia, I.P. and, when eligible, by COMPETE 2020 FEDER funds, under the Scientific Employment Stimulus-Individual Call 2021.02251.CEECIND/CP1663/CT0016

    Evaluation of the activity and substrate specificity of the human SENP family of SUMO proteases

    Get PDF
    Protein modification with the small ubiquitin-like modifier (SUMO) is a reversible process regulating many central biological pathways. The reversibility of SUMOylation is ensured by SUMO proteases many of which belong to the sentrin/SUMO-specific protease (SENP) family. In recent years, many advances have been made in allocating SENPs to specific biological pathways. However, due to difficulties in obtaining recombinant full-length active SENPs for thorough enzymatic characterization, our knowledge on these proteases is still limited. In this work, we used in vitro synthesized full-length human SENPs to perform a side-by-side comparison of their activities and substrate specificities. ProSUMO1/2/3, RanGAP1-SUMO1/2/3 and polySUMO2/3 chains were used as substrates in these analyses. We found that SENP1 is by far the most versatile and active SENP whereas SENP3 stands out as the least active of these enzymes. Finally, a comparison between the activities of full-length SENPs and their catalytic domains suggests that in some cases their non-catalytic regions influence their activity.We thank Dr. Frauke Melchior (University of Heidelberg, Germany), Dr. Guy Salvesen (Sanford-Burnham Medical Research Institute, USA), Dr. Hidde Ploegh (Whitehead Institute, USA) and Dr. Joanna Morris (University of Birmingham, UK) for kindly providing plasmids. This work was funded by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the Operational Competitiveness Programme COMPETE and by National Funds through FCT - Fundação para a Ciência e a Tecnologia under the project FCOMP-01-0124-FEDER-027627 (EXPL/BEX-BCM/0320/2012) and by project “ NORTE-07-0124-FEDER-000003- Cell homeotasis tissue organization and organism biology ”co-funded by Programa Operacional Regional do Norte (ON.2 — O Novo Norte), under the Quadro de Referência Estratégico Nacional (QREN), through FEDER and by FCT. A. V. M. was supported by project FCOMP-01-0124-FEDER-027627-EXPL/BEX-BCM/0320/2012. C. P. G. (SFRH/BPD/64388/2009)and M. P. P. (SFRH/BPD/47447/2008)were supported by FCT, COMPETE, Programa Operacional Potencial Humano (POPH) do QREN, FEDER and Fundo Social Europeu (FSE)

    Chemically monoubiquitinated PEX5 binds to the components of the peroxisomal docking and export machinery

    Get PDF
    Peroxisomal matrix proteins contain either a peroxisomal targeting sequence 1 (PTS1) or a PTS2 that are recognized by the import receptors PEX5 and PEX7, respectively. PEX5 transports the PTS1 proteins and the PEX7/PTS2 complex to the docking translocation module (DTM) at the peroxisomal membrane. After cargo release PEX5 is monoubiquitinated and extracted from the peroxisomal membrane by the receptor export machinery (REM) comprising PEX26 and the AAA ATPases PEX1 and PEX6. Here, we investigated the protein interactions of monoubiquitinated PEX5 with the docking proteins PEX13, PEX14 and the REM. “Click” chemistry was used to synthesise monoubiquitinated recombinant PEX5. We found that monoubiquitinated PEX5 binds the PEX7/PTS2 complex and restores PTS2 protein import in vivo in ¿PEX5 fibroblasts. In vitro pull-down assays revealed an interaction of recombinant PEX5 and monoubiquitinated PEX5 with PEX13, PEX14 and with the REM components PEX1, PEX6 and PEX26. The interactions with the docking proteins were independent of the PEX5 ubiquitination status whereas the interactions with the REM components were increased when PEX5 is ubiquitinated.We are grateful to Stephen J. Gould (Johns Hopkins University, Baltimore), Nancy E. Braverman (McGill University, Montreal), Wolfgang Schliebs (Ruhr University, Bochum) and Daniel Passon (EMBL, Hamburg) for providing plasmids and antibodies. Work in J.E.A. lab is funded by FEDER (Fundo Europeu de Desenvolvimento Regional), through COMPETE 2020 – Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through Fundação para a Ciência e Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Inovação in the framework of the projects “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274) and “The molecular mechanisms of peroxisome biogenesis” (PTDC/BEXBCM/2311/2014), and through Norte 2020 – Programa Operacional Regional do Norte, under the application of the “Porto Neurosciences and Neurologic Disease Research Initiative at i3S” (NORTE-01-0145-FEDER-000008). We acknowledge support by the Open Access Publishing Fund of the University of Tübingen and the Deutsche Forschungsgemeinschaft for publishing costs

    The de novo synthesis of ubiquitin: Identification of deubiquitinases acting on ubiquitin precursors

    Get PDF
    Protein ubiquitination, a major post-translational modification in eukaryotes, requires an adequate pool of free ubiquitin. Cells maintain this pool by two pathways, both involving deubiquitinases (DUBs): recycling of ubiquitin from ubiquitin conjugates and processing of ubiquitin precursors synthesized de novo. Although many advances have been made in recent years regarding ubiquitin recycling, our knowledge on ubiquitin precursor processing is still limited, and questions such as when are these precursors processed and which DUBs are involved remain largely unanswered. Here we provide data suggesting that two of the four mammalian ubiquitin precursors, UBA 52 and UBA 80 , are processed mostly post-translationally whereas the other two, UBB and UBC, probably undergo a combination of co-and post-translational processing. Using an unbiased biochemical approach we found that UCHL 3 , USP 9 X, USP 7 , USP 5 and Otulin/Gumby/FAM 105 b are by far the most active DUBs acting on these precursors. The identification of these DUBs together with their properties suggests that each ubiquitin precursor can be processed in at least two different manners, explaining the robustness of the ubiquitin de novo synthesis pathway.We are grateful to Dr. Cheryl Arrowsmith (University of Toronto, Canada) for providing the plasmids pET28a-LIC-USP5 (Addgene plasmid 25299) and pET28a-LIC-USP5(C335A). We thank Dr. João M. Cabral (IBMC, University of Porto, Portugal) for critically reading the manuscript. This work was supported by national funds through FCT - Fundação para a Ciência e a Tecnologia/MEC – Ministério da Educação e Ciência and when applicable co-funded by Fundo de Desenvolvimento Regional (FEDER) funds within the partnership agreement PT2020 related with the research unit number 4293; by Project “NORTE-07-0124-FEDER-000003 -Cell homeotasis tissue organization and organism biology”, co-funded by Programa Operacional Regional do Norte (ON.2—O Novo Norte), under the Quadro de Referência Estratégico Nacional (QREN), through FEDER and by FCT; by Portuguese National Mass Spectrometry Network (RNEM) through the project REDE/1504/REM/2005; and by Química Orgânica, Produtos Naturais e Agroalimentares (QOPNA) research unit funds provided by FCT, European Union, QREN, FEDER and Operational Competitiveness Programme (COMPETE) under the projects PEst-C/QUI/UI0062/2013 and FCOMP-01-0124-FEDER-037296. C.P.G. and M.P.P. were supported by FCT, COMPETE and Fundo Social Europeu. A.V.M. was supported by the project FCOMP-01-0124-FEDER-027627-EXPL/BEX-BCM/0320/2012 financed by national funds from FCT/Ministério da Educação e Ciência (PIDDAC) and co-funded by FEDER through COMPETE—Programa Operacional Factores de Competitividade (POFC)

    The first minutes in the life of a peroxisomal matrix protein

    Get PDF
    In the field of intracellular protein sorting, peroxisomes are most famous by their capacity to import oligomeric proteins. The data supporting this remarkable property are abundant and, understandably, have inspired a variety of hypothetical models on how newly synthesized (cytosolic) proteins reach the peroxisome matrix. However, there is also accumulating evidence suggesting that many peroxisomal oligomeric proteins actually arrive at the peroxisome still as monomers. In support of this idea, recent data suggest that PEX5, the shuttling receptor for peroxisomal matrix proteins, is also a chaperone/holdase, binding newly synthesized peroxisomal proteins in the cytosol and blocking their oligomerization. Here we review the data behind these two different perspectives and discuss their mechanistic implications on this protein sorting pathway. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann.This work was supported by national funds through FCT – Fundação para a Ciência e a Tecnologia/MEC-Ministério da Educação e Ciência and when applicable co-funded by FEDER funds within the partnership agreement PT2020 related with the research unit number 4293; and by the project FCOMP-01-0124-FEDER-019731 (PTDC/BIABCM/118577/2010) funded by national funds through FCT and co-funded by Fundo Europeu de Desenvolvimento Regional (FEDER) through the Operation- alCompetitiveness Programme(COMPETE).A. F.D., T.F., T.A.R. and C. P. G. were supported by FCT, Programa Operacional Potencial Humano (POPH) do Quadro de Referência Estratégico Nacional (QREN), and Fundo Social Europeu (FSE)
    corecore