87 research outputs found

    An exploration into the practice of online service failure and recovery strategies in the Balkans

    Get PDF
    © 2018 To help managers better balance online service failures and recovery strategies, organisations are increasingly offering a variety of recovery programmes. Anecdotal reports suggest that organisations are experimenting with various recovery strategies, and particularly transitioning offline recovery strategies into the emerging technological tapestries. Drawing on data collected from two Balkan countries (Kosovo and Albania) with varying service failures, recovery strategies and levels of participation in online environments, this study examines how interactions between the customer and provider impact on recovery strategies. Unlike existing studies regarding online service failure and recovery strategies, we argue that rather than examining the subconscious of the customer as a stand-alone explanation for failure-recovery perceptions, interactions with the provider must also be taken into account. The current study extends the related construct of failure-recovery perceptions and it suggests that service failure generates different recovery strategies based on the contextual social world

    Self-Stabilizing Byzantine Resilient Topology Discovery and Message Delivery

    Get PDF
    Traditional Byzantine resilient algorithms use 2f+12f + 1 vertex disjoint paths to ensure message delivery in the presence of up to f Byzantine nodes. The question of how these paths are identified is related to the fundamental problem of topology discovery. Distributed algorithms for topology discovery cope with a never ending task, dealing with frequent changes in the network topology and unpredictable transient faults. Therefore, algorithms for topology discovery should be self-stabilizing to ensure convergence of the topology information following any such unpredictable sequence of events. We present the first such algorithm that can cope with Byzantine nodes. Starting in an arbitrary global state, and in the presence of f Byzantine nodes, each node is eventually aware of all the other non-Byzantine nodes and their connecting communication links. Using the topology information, nodes can, for example, route messages across the network and deliver messages from one end user to another. We present the first deterministic, cryptographic-assumptions-free, self-stabilizing, Byzantine-resilient algorithms for network topology discovery and end-to-end message delivery. We also consider the task of r-neighborhood discovery for the case in which rr and the degree of nodes are bounded by constants. The use of r-neighborhood discovery facilitates polynomial time, communication and space solutions for the above tasks. The obtained algorithms can be used to authenticate parties, in particular during the establishment of private secrets, thus forming public key schemes that are resistant to man-in-the-middle attacks of the compromised Byzantine nodes. A polynomial and efficient end-to-end algorithm that is based on the established private secrets can be employed in between periodical re-establishments of the secrets

    Host-specific genetic variation of highly pathogenic avian influenza viruses (H5N1)

    Get PDF
    The complete genome sequences of two isolates A/chicken/Egypt/CL6/07 (CL6/07) and A/duck/Egypt/D2br10/07 (D2br10/07) of highly pathogenic avian influenza virus (HPAI) H5N1 isolated at the beginning of 2007 outbreak in Egypt were determined and compared with all Egyptian HPAI H5N1 sequences available in the GenBank. Sequence analysis utilizing the RNA from the original tissue homogenate showed amino acid substitutions in seven of the viral segments in both samples. Interestingly, these changes were different between the CL6/07 and D2br10/07 when compared to other Egyptian isolates. Moreover, phylogenetic analysis showed independent sub-clustering of the two viruses within the Egyptian sequences signifying a possible differential adaptation in the two hosts. Further, pre-amplification analysis of H5N1 might be necessary for accurate data interpretation and identification of distinct factor(s) influencing the evolution of the virus in different poultry species

    Role of Position 627 of PB2 and the Multibasic Cleavage Site of the Hemagglutinin in the Virulence of H5N1 Avian Influenza Virus in Chickens and Ducks

    Get PDF
    Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2) from glutamic acid (E) in avian isolates to lysine (K) in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203) virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi), while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens

    Cellular and molecular basis for endometriosis-associated infertility

    Full text link
    corecore