175 research outputs found

    The quantum group, Harper equation and the structure of Bloch eigenstates on a honeycomb lattice

    Full text link
    The tight-binding model of quantum particles on a honeycomb lattice is investigated in the presence of homogeneous magnetic field. Provided the magnetic flux per unit hexagon is rational of the elementary flux, the one-particle Hamiltonian is expressed in terms of the generators of the quantum group Uq(sl2)U_q(sl_2). Employing the functional representation of the quantum group Uq(sl2)U_q(sl_2) the Harper equation is rewritten as a systems of two coupled functional equations in the complex plane. For the special values of quasi-momentum the entangled system admits solutions in terms of polynomials. The system is shown to exhibit certain symmetry allowing to resolve the entanglement, and basic single equation determining the eigenvalues and eigenstates (polynomials) is obtained. Equations specifying locations of the roots of polynomials in the complex plane are found. Employing numerical analysis the roots of polynomials corresponding to different eigenstates are solved out and the diagrams exhibiting the ordered structure of one-particle eigenstates are depicted.Comment: 11 pages, 4 figure

    Synthetic Gauge Fields for Vibrational Excitations of Trapped ions

    Get PDF
    The vibrations of a collection of ions in a microtrap array can be described in terms of hopping phonons. We show theoretically that the vibrational couplings may be tailored by using a gradient of the microtrap frequencies, together with a periodic driving of the trapping potential. These ingredients allow us to induce effective gauge fields on the vibrational excitations, such that phonons mimic the behavior of charged particles in a magnetic field. In particular, microtrap arrays are ideally suited to realize the famous Aharonov-Bohm effect, and observe the paradigmatic edge states typical from quantum-Hall samples and topological insulators.Comment: replaced with published versio

    The role of a form of vector potential - normalization of the antisymmetric gauge

    Full text link
    Results obtained for the antisymmetric gauge A=[Hy,-Hx]/2 by Brown and Zak are compared with those based on pure group-theoretical considerations and corresponding to the Landau gauge A=[0,Hx]. Imposing the periodic boundary conditions one has to be very careful since the first gauge leads to a factor system which is not normalized. A period N introduced in Brown's and Zak's papers should be considered as a magnetic one, whereas the crystal period is in fact 2N. The `normalization' procedure proposed here shows the equivalence of Brown's, Zak's, and other approaches. It also indicates the importance of the concept of magnetic cells. Moreover, it is shown that factor systems (of projective representations and central extensions) are gauge-dependent, whereas a commutator of two magnetic translations is gauge-independent. This result indicates that a form of the vector potential (a gauge) is also important in physical investigations.Comment: RevTEX, 9 pages, to be published in J. Math. Phy

    Predicted signatures of p-wave superfluid phases and Majorana zero modes of fermionic atoms in RF absorption

    Full text link
    We study the superfluid phases of quasi-2D atomic Fermi gases interacting via a p-wave Feshbach resonance. We calculate the absorption spectra of these phases under a hyperfine transition, for both non-rotating and rotating superfluids. We show that one can identify the different phases of the p-wave superfluid from the absorption spectrum. The absorption spectrum shows clear signatures of the existence of Majorana zero modes at the cores of vortices of the weakly-pairing px+ipyp_x+ip_y phase

    Adiabatic continuity between Hofstadter and Chern insulator states

    Full text link
    We show that the topologically nontrivial bands of Chern insulators are adiabatic cousins of the Landau bands of Hofstadter lattices. We demonstrate adiabatic connection also between several familiar fractional quantum Hall states on Hofstadter lattices and the fractional Chern insulator states in partially filled Chern bands, which implies that they are in fact different manifestations of the same phase. This adiabatic path provides a way of generating many more fractional Chern insulator states and helps clarify that nonuniformity in the distribution of the Berry curvature is responsible for weakening or altogether destroying fractional topological states

    Hofstadter butterfly for a finite correlated system

    Full text link
    We investigate a finite two-dimensional system in the presence of external magnetic field. We discuss how the energy spectrum depends on the system size, boundary conditions and Coulomb repulsion. On one hand, using these results we present the field dependence of the transport properties of a nanosystem. In particular, we demonstrate that these properties depend on whether the system consists of even or odd number of sites. On the other hand, on the basis of exact results obtained for a finite system we investigate whether the Hofstadter butterfly is robust against strong electronic correlations. We show that for sufficiently strong Coulomb repulsion the Hubbard gap decreases when the magnetic field increases.Comment: 7 pages, 5 figures, revte

    Majorana Fermions in superconducting 1D systems having periodic, quasiperiodic, and disordered potentials

    Full text link
    We present a unified study of the effect of periodic, quasiperiodic and disordered potentials on topological phases that are characterized by Majorana end modes in 1D p-wave superconducting systems. We define a topological invariant derived from the equations of motion for Majorana modes and, as our first application, employ it to characterize the phase diagram for simple periodic structures. Our general result is a relation between the topological invariant and the normal state localization length. This link allows us to leverage the considerable literature on localization physics and obtain the topological phase diagrams and their salient features for quasiperiodic and disordered systems for the entire region of parameter space.Comment: 5 pages, 2 figure

    Hofstadter Problem on the Honeycomb and Triangular Lattices: Bethe Ansatz Solution

    Full text link
    We consider Bloch electrons on the honeycomb lattice under a uniform magnetic field with 2πp/q2 \pi p/q flux per cell. It is shown that the problem factorizes to two triangular lattices. Treating magnetic translations as Heisenberg-Weyl group and by the use of its irreducible representation on the space of theta functions, we find a nested set of Bethe equations, which determine the eigenstates and energy spectrum. The Bethe equations have simple form which allows to consider them further in the limit p,qp, q \to \infty by the technique of Thermodynamic Bethe Ansatz and analyze Hofstadter problem for the irrational flux.Comment: 7 pages, 2 figures, Revte

    Moire Butterflies

    Full text link
    The Hofstadter butterfly spectral patterns of lattice electrons in an external magnetic field yield some of the most beguiling images in physics. Here we explore the magneto-electronic spectra of systems with moire spatial patterns, concentrating on the case of twisted bilayer graphene. Because long-period spatial patterns are accurately formed at small twist angles, fractal butterfly spectra and associated magneto-transport and magneto-mechanical anomalies emerge at accessible magnetic field strengths

    The longitudinal conductance of mesoscopic Hall samples with arbitrary disorder and periodic modulations

    Full text link
    We use the Kubo-Landauer formalism to compute the longitudinal (two-terminal) conductance of a two dimensional electron system placed in a strong perpendicular magnetic field, and subjected to periodic modulations and/or disorder potentials. The scattering problem is recast as a set of inhomogeneous, coupled linear equations, allowing us to find the transmission probabilities from a finite-size system computation; the results are exact for non-interacting electrons. Our method fully accounts for the effects of the disorder and the periodic modulation, irrespective of their relative strength, as long as Landau level mixing is negligible. In particular, we focus on the interplay between the effects of the periodic modulation and those of the disorder. This appears to be the relevant regime to understand recent experiments [S. Melinte {\em et al}, Phys. Rev. Lett. {\bf 92}, 036802 (2004)], and our numerical results are in qualitative agreement with these experimental results. The numerical techniques we develop can be generalized straightforwardly to many-terminal geometries, as well as other multi-channel scattering problems.Comment: 13 pages, 11 figure
    corecore