70 research outputs found

    Genetički polimorfizmi u dijabetesu: Utjecaj na terapiju oralnim antidijabeticima

    Get PDF
    Due to new genetic insights, etiologic classification of diabetes is under constant scrutiny. Hundreds, or even thousands, of genes are linked with type 2 diabetes. Three common variants (Lys23 of KCNJ11, Pro12 of PPARG, and the T allele at rs7903146 of TCF7L2) have been shown to be predisposed to type 2 diabetes mellitus across many large studies. Individually, each of these polymorphisms is only moderately predisposed to type 2 diabetes. On the other hand, monogenic forms of diabetes such as MODY and neonatal diabetes are characterized by unique clinical features and the possibility of applying a tailored treatment. Genetic polymorphisms in drug-metabolizing enzymes, transporters, receptors, and other drug targets have been linked to interindividual differences in the efficacy and toxicity of a number of medications. Mutations in genes important in drug absorption, distribution, metabolism and excretion (ADME) play a critical role in pharmacogenetics of diabetes. There are currently five major classes of oral pharmacological agents available to treat type 2 diabetes: sulfonylureas, meglitinides, metformin (a biguanide), thiazolidinediones, and α-glucosidase inhibitors. Other classes are also mentioned in literature. In this work, different types of genetic mutations (mutations of the gene for glucokinase, HNF 1, HNF1ß and Kir6.2 and SUR1 subunit of KATP channel, PPAR-γ, OCT1 and OCT2, cytochromes, direct drug-receptor (KCNJ11), as well as the factors that influence the development of the disease (TCF7L2) and variants of genes that lead to hepatosteatosis caused by thiazolidinediones) and their influence on the response to therapy with oral antidiabetics will be reviewed.Dijabetes tipa 2 dosegao je proporcije epidemije u SAD (> 18 milijuna) i cijelom svijetu (170 milijuna oboljelih osoba) te ima tendenciju daljnjeg dramatičnog rasta. Stoga se u posljednje vrijeme ulažu napori da se otkriju i razviju novi farmakološki agensi za liječenje ove bolesti. Klasifikacija šećerne bolesti proširena je uspjesima istraživača na području genetike. Da bismo razumjeli farmakogenetiku antidijabetika neophodno je razumjeti genetiku samog dijabetesa. Kao što će biti prikazano u ovom radu veliki broj gena koji su povezani s razvojem dijabetesa takođe utječu i na odgovor na terapiju antidijabeticima. S druge strane, mutacije gena koji utječu na ADME (apsorpcija, distribucija, metabolizam i ekskrecija) lijeka imaju značajan utjecaj na farmakogenetiku oralnih antidijabetika. Utvrđeno je da je dijabetes genetički heterogena bolest. Uobičajeni oblici dijabetesa su gotovo uvijek poligenski i za razvoj same bolesti vrlo su značajne snažne interakcije među različitim genima kao i između gena i okoliša. Zbog toga mutacije ili polimorfizmi koji u manjoj mjeri utječu na funkciju gena mogu postati klinički značajni samo u slučaju kada se kombiniraju s drugim faktorima odnosno genima. Smatra se da u razvoju dijabetesa mogu sudjelovati stotine pa čak i tisuće gena. Do 2006. identificirano je nekoliko uobičajenih alela koji povećavaju rizik za razvoj dijabetesa, od kojih su najznačajniji PPARG (Pro12), KCNJ11 (Lys23) i TCF7L2 (T na rs7903146). Do danas je najveći uspjeh postignut u identifikaciji gena odgovornih za razmjerno rijetke oblike ove bolesti poput ”Maturity-onset diabetes of the young” (MODY) i neonatalnog dijabetesa. Monogenske oblike dijabetesa odlikuju jedinstvene kliničke karakteristike i mogućnost primjene individualnog tretmana. Genetički polimorfizmi enzima koji utječu na metabolizam lijekova, transportera, receptora i drugih ciljeva djelovanja lijekova povezani su s interindividualnim razlikama u efikasnosti i toksičnosti mnogih lijekova. Vrlo je važno da se na temelju farmakogenetičkih istraživanja mogu predvidjeti neki neželjeni efekti lijekova. Trenutačno postoji pet glavnih klasa oralnih antidijabetika: sulfoniluree, meglitinidi, metformin (bigvanid), tiazolidindioni i inhibitori α-glukozidaze. U literaturi se također spominju inhibitori dipeptidil peptidaze IV (DPP-IV), selektivni antagonisti kanabinoidnog receptora 1 (CB-1), glukagonu slični peptid 1 mimetici i amilin mimetici. Razumijevanje mehanizama koji rezultiraju disfunkcijom β stanica na fiziološkom i molekularnom nivou neophodno je za napredak u razumijevanju tretmana dijabetesa. U ovom radu dat je pregled različitih genetičkih mutacija (mutacije gena za glukokinazu, HNF 1, HNF1ß, Kir6.2 i SUR 1 podjedinicu KATP kanala ß stanica, PPAR-γ, OCT1 i OCT2, citohrome, KCNJ11, faktore koji utječu na razvoj bolesti (TCF7L2) i varijante gena koji dovode do hepatosteatoze uzrokovane tiazolidindionima) te njihov utjecaj na odgovor na terapiju oralnim antidijabeticima

    Clinical Study HLA-G Polymorphism (rs16375) and Acute Rejection in Liver Transplant Recipients

    No full text
    Background. HLA-G molecules exhibit immunomodulatory properties that can delay graft rejection. The 14 bp insertion/deletion polymorphism (INDEL) (rs16375) influences the stability of final HLA-G mRNA and its soluble isoforms. Objective. The present study aimed to investigate the possible association between this polymorphism and the incidence of acute rejection in Iranian liver transplant recipients. Methods. Different genotypes were evaluated by PCR. The patients who had acute rejection within 6 months after transplantation were classified as acute rejection (AR) group, while others were considered as nonacute rejection (NAR) group. Results. Among the recipients, 21 patients (21%) had at least one episode of AR, while the other 79 patients (79%) had normal liver function. No significant differences were found between the two groups regarding sex, MELD score, and primary liver disease. Also, no difference was observed concerning rs16375 genotype and allele frequency ( = 0.44, OR: 0.69; CI: 0.21-2.10). Conclusion. The study results revealed no significant difference between the AR and the NAR groups regarding the 14 bp INDEL genotypes and alleles. Further studies are recommended to be conducted on other polymorphic sites as well as monitoring of serum HLA-G concentration in order to ascertain the potential implications of this marker in our population

    Formation of inorganic nanocomposites by filling TiO2 nanopores with indium and antimony sulfide precursor aerosols

    No full text
    Nanocomposites of nanoporous TiO2 In2S3 and np TiO2 Sb2S3 were formed by deposition of In2S3 or Sb2S3 using spray ion layer gas reaction technique from their precursor solutions onto nanoporous TiO2 substrates at temperatures of 150, 175 and 200 C. The least penetration of the precursor into np TiO2 was achieved for np TiO2 In2S3 nanocomposites from indium acetylacetonate salt. The deepest penetration was obtained for both np TiO2 In2S3 Cl and np TiO2 Sb2S3 nanocomposites with effective diffusion coefficients of 3.3 10 amp; 8722; 3 cm2 s and 3.2 10 amp; 8722; 3 cm2 s, respectively. The transport of the precursors in np TiO2 and the formation of different nanocomposites were described the regime of the Knudsen diffusion mode

    Role of chlorine in In2S3 for band alignment at nanoporous TiO2 In2S3 interfaces

    No full text
    Coatings of Cl free and Cl containing In2S3 In2S3 Cl layers were prepared by spray ion layer gas reaction ILGAR on nanoporous TiO2 np TiO2 . Charge separation in FTO np TiO2 In2S3 Cl, FTO In2S3 Cl, FTO np TiO2 In2S3 acac and FTO In2S3 acac systems has been investigated by modulated surface photovoltage spectroscopy SPV . The exponential defect tails below the band gap of In2S3 were reduced for In2S3 Cl. The analysis of the SPV spectra allowed to distinguish different mechanisms of charge separation and to deduce the conduction band offsets about 0.3 eV and 0.05 eV for np TiO2 In2S3 Cl and np TiO2 In2S3 acac, respectively in correlation with photoelectron measurement

    Lignin monomer production integrated into the γ-valerolactone sugar platform

    No full text
    We demonstrate an experimental approach for upgrading lignin that has been isolated from corn stover via biomass fractionation using c-valerolactone (GVL) as a solvent. This GVL-based approach can be used in parallel with lignin upgrading to produce soluble carbohydrates at high yields (>= 70%) from biomass without the use of enzymes, ionic liquids, or concentrated acids. The lignin was isolated after an initial hydrolysis step in which corn stover was treated in a high-solids batch reactor at 393 K for 30 min in a solvent mixture consisting of 80 wt% GVL and 20 wt% water. Lignin was isolated by precipitation in water and characterized by 2D HSQC NMR, showing that the extracted lignin was similar to native lignin, which can be attributed to the low acid level and the low extraction temperatures that are achievable using GVL as a solvent. This lignin was upgraded using a two-stage hydrogenolysis process over a Ru/C catalyst. The isolated lignin was first dissolved to form a mixture of 10% lignin, 80% THF, 8.5% H3PO4 and 1.5% H2O, and treated at 423 K under hydrogen. The THF was removed by evaporation and replaced with heptane, forming a biphasic mixture. This mixture was then treated at 523 K in the presence of Ru/C and H-2. The resulting heptane phase contained soluble lignin-derived monomers corresponding to 38% of the carbon in the original lignin. By adding 5% methanol during the second catalytic step, we produced additional monomers containing methyl esters and increased carbon yields to 48%. This increase in yield can be attributed to stabilization of carboxylic acid intermediates by esterification. The yield reported here is comparable to yields obtained with native lignin and is much higher than yields obtained with lignin isolated by other processes. These results suggest that GVL-based biomass fractionation could facilitate the integrated conversion of all three biomass fractions
    corecore