171 research outputs found

    A Blockchain-based Approach for Data Accountability and Provenance Tracking

    Full text link
    The recent approval of the General Data Protection Regulation (GDPR) imposes new data protection requirements on data controllers and processors with respect to the processing of European Union (EU) residents' data. These requirements consist of a single set of rules that have binding legal status and should be enforced in all EU member states. In light of these requirements, we propose in this paper the use of a blockchain-based approach to support data accountability and provenance tracking. Our approach relies on the use of publicly auditable contracts deployed in a blockchain that increase the transparency with respect to the access and usage of data. We identify and discuss three different models for our approach with different granularity and scalability requirements where contracts can be used to encode data usage policies and provenance tracking information in a privacy-friendly way. From these three models we designed, implemented, and evaluated a model where contracts are deployed by data subjects for each data controller, and a model where subjects join contracts deployed by data controllers in case they accept the data handling conditions. Our implementations show in practice the feasibility and limitations of contracts for the purposes identified in this paper

    Dynamical Symmetry Enlargement Versus Spin-Charge Decoupling in the One-Dimensional SU(4) Hubbard Model

    Full text link
    We investigate dynamical symmetry enlargement in the half-filled SU(4) Hubbard chain using non-perturbative renormalization group and Quantum Monte Carlo techniques. A spectral gap is shown to open for arbitrary Coulombic repulsion UU. At weak coupling, U3tU \lesssim 3t, a SO(8) symmetry between charge and spin-orbital excitations is found to be dynamically enlarged at low energy. At strong coupling, U6tU \gtrsim 6t, the charge degrees of freedom dynamically decouple and the resulting effective theory in the spin-orbital sector is that of the SO(6) antiferromagnetic Heisenberg model. Both regimes exhibit spin-Peierls order. However, although spin-orbital excitations are incoherentincoherent in the SO(6) regime they are coherentcoherent in the SO(8) one. The cross-over between these regimes is discussed.Comment: 4 pages, 2 figure

    Monte Carlo Simulation of the Heisenberg Antiferromagnet on a Triangular Lattice: Topological Excitations

    Full text link
    We have simulated the classical Heisenberg antiferromagnet on a triangular lattice using a local Monte Carlo algorithm. The behavior of the correlation length ξ\xi, the susceptibility at the ordering wavevector χ(Q)\chi(\bf Q), and the spin stiffness ρ\rho clearly reflects the existence of two temperature regimes -- a high temperature regime T>TthT > T_{th}, in which the disordering effect of vortices is dominant, and a low temperature regime T<TthT < T_{th}, where correlations are controlled by small amplitude spin fluctuations. As has previously been shown, in the last regime, the behavior of the above quantities agrees well with the predictions of a renormalization group treatment of the appropriate nonlinear sigma model. For T>TthT > T_{th}, a satisfactory fit of the data is achieved, if the temperature dependence of ξ\xi and χ(Q)\chi(\bf Q) is assumed to be of the form predicted by the Kosterlitz--Thouless theory. Surprisingly, the crossover between the two regimes appears to happen in a very narrow temperature interval around Tth0.28T_{th} \simeq 0.28.Comment: 13 pages, 8 Postscript figure

    Particle Formation and Ordering in Strongly Correlated Fermionic Systems: Solving a Model of Quantum Chromodynamics

    Get PDF
    In this paper we study a (1+1)-dimensional version of the famous Nambu-Jona-Lasinio model of Quantum Chromodynamics (QCD2) both at zero and finite hadron density. We use non-perturbative techniques (non-Abelian bosonization and Truncated Conformal Space Approach). At zero density we describe a formation of fermion three-quark (nucleons and Δ\Delta-baryons) and boson (two-quark mesons, six-quark deuterons) bound states and also a formation of a topologically nontrivial phase. At finite hadron density, the model has a rich phase diagram which includes phases with density wave and superfluid quasi-long-range (QLR) order and also a phase of a baryon Tomonaga-Luttinger liquid (strange metal). The QLR order results as a condensation of scalar mesons (the density wave) or six-quark bound states (deuterons).Comment: 31 pages, pdflatex file, 7 figures; typos corrected, the version from Phys. Rev.

    Trionic and quartetting phases in one-dimensional multicomponent ultracold fermions

    Full text link
    We investigate the possible formation of a molecular condensate, which might be, for instance, the analogue of the alpha condensate of nuclear physics, in the context of multicomponent cold atoms fermionic systems. A simple paradigmatic model of N-component fermions with contact interactions loaded into a one-dimensional optical lattice is studied by means of low-energy and numerical approaches. For attractive interaction, a quasi-long-range molecular superfluid phase, formed from bound-states made of N fermions, emerges at low density. We show that trionic and quartetting phases, respectively for N=3,4, extend in a large domain of the phase diagram and are robust against small symmetry-breaking perturbations.Comment: Contribution to the SOTANCP 2008 worksho

    Effect of Hund coupling in the one-dimensional SU(4) Hubbard model

    Full text link
    The one-dimensional SU(4) Hubbard model perturbed by Hund coupling is studied, away from half-filling, by means of renormalization group and bosonization methods. A spectral gap is always present in the spin-orbital sector irrespective of the magnitude of the Coulomb repulsion. We further distinguish between two qualitatively different regimes. At small Hund coupling, we find that the symmetry of the system is dynamically enlarged to SU(4) at low energy with the result of {\it coherent} spin-orbital excitations. When the charge sector is not gapped, a superconducting instability is shown to exist. At large Hund coupling, the symmetry is no longer enlarged to SU(4) and the excitations in the spin sector become {\it incoherent}. Furthermore, the superconductivity can be suppressed in favor of the conventional charge density wave state.Comment: 10 pages, 1 figur

    Comment on "Kagome Lattice Antiferromagnet Stripped to Its Basics"

    Full text link
    Density matrix renormalization group (DMRG) calculations on large systems (up to 3096 spins) indicate that the ground state of the Heisenberg model on a 3-chain Kagome strip is spontaneously dimerized. This system has degenerate ground states and a gap to triplet and singlet excitations. These results are in direct contradiction with recent results of Azaria et al (Phys. Rev. Lett. 81, 1694 (1998)) and suggest a need for a reexamination of the underlying field theory.Comment: 1 page, submitted to PR

    Rise and fall of Yu-Shiba-Rusinov bound-states in charge conserving ss-wave one-dimensional superconductors

    Full text link
    We re-examine the problem of a magnetic impurity coupled to a superconductor focusing on the role of quantum fluctuations. We study in detail, a system that consists of a one-dimensional charge conserving spin-singlet superconductor coupled to a boundary magnetic impurity. Our main finding is that quantum fluctuations lead to the destruction of Yu-Shiba-Rusinov (YSR) intra-gap bound-states in all but a narrow region of the phase diagram. We carry out our analysis in three stages, increasing the role of the quantum fluctuations at each stage. First we consider the limit of a classical impurity and study the bulk semiclassically, finding YSR states throughout the phase diagram, a situation similar to conventional BCS superconductors. In the second stage, we reintroduce quantum fluctuations in the bulk and find that the YSR state is suppressed over half of the phase diagram, existing only around the quantum critical point separating the unscreened and the partially screened phases. In the final stage we solve exactly the full interacting model with arbitrary coupling constants using Bethe Ansatz. We find that including both the quantum fluctuating bulk and quantum impurity destabilizes the YSR state over most of the phase diagram allowing it to exist only in a small region, the YSR regime, between a Kondo-screened and an unscreened regime. Within the YSR regime a first order phase transition occurs between a spin singlet and doublet ground state. We also find that for large enough impurity spin exchange interaction a renormalized Kondo-screened regime is established. In this regime, not found for BCS superconductors, there is no YSR state and a renormalized Kondo temperature scale is generated

    Magnetic phase diagram of spatially anisotropic, frustrated spin-1/2 Heisenberg antiferromagnet on a stacked square lattice

    Full text link
    Magnetic phase diagram of a spatially anisotropic, frustrated spin-1/2 Heisenberg antiferromagnet on a stacked square lattice is investigated using second-order spin-wave expansion. The effects of interlayer coupling and the spatial anisotropy on the magnetic ordering of two ordered ground states are explicitly studied. It is shown that with increase in next nearest neighbor frustration the second-order corrections play a significant role in stabilizing the magnetization. We obtain two ordered magnetic phases (Neel and stripe) separated by a paramagnetic disordered phase. Within second-order spin-wave expansion we find that the width of the disordered phase diminishes with increase in the interlayer coupling or with decrease in spatial anisotropy but it does not disappear. Our obtained phase diagram differs significantly from the phase diagram obtained using linear spin-wave theory.Comment: 22 pages, 6 figures, minor changes from previous versio
    corecore