3 research outputs found

    Photocatalytic Degradation of Humic Acids Using LaFeO<sub>3</sub>

    No full text
    TiO2 photocatalytic degradation of dissolved organic matter (DOM), namely humic substances composed of humic (HA) and fulvic acids, has been investigated for decades. However, the application of non-TiO2 photocatalysis for this purpose has only received recent attention. Aiming to fill this gap, this study was performed to elucidate the photocatalytic degradation of HAs using the novel photocatalyst LaFeO3 (LF) under simulated solar light irradiation. HA was selectively fractionated by ultrafiltration to two different molecular size fractions representing high molecular fraction as 100 kDa and lower molecular size fraction comprised of humic components expressing size fractions smaller than 30 kDa. Photocatalyst LF was prepared by the citrate auto-combustion method and characterized by using various techniques and Brunauer&#8315;Emmett&#8315;Teller (BET) surface area. Ultraviolet-visible (UV-vis) and excitation-emission matrix (EEM) fluorescence spectroscopic features were used to characterize the treated HA and photocatalytic mineralization extend was followed by dissolved organic carbon (DOC) contents. Photocatalytic performance of LF was compared to the metal modified version as Cu-doped LF. Highest mineralization was achieved upon the use of a photocatalyst dose of 0.25 mg/mL of LaFe0.90Cu0.10O3&#8722;&#948; (Cu-LF) for 30 kDaHA, whereas lowest mineralization was attained for 100 kDaHA upon the use of LF. Photocatalytic degradation kinetics indicated the possible use of LF and Cu-LF for the degradation of HA

    Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure

    No full text
    Tuysuz, Mehmet/0000-0002-2650-5475; Tomruk, Arin/0000-0002-7600-0811WOS: 000381842500011PubMed: 26836107The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15 min cellular phone radiation + PTZ treatment + 30 min cellular phone radiation, Group III: 30 min cellular phone radiation + PTZ treatment + 30 min cellular phone radiation. The RF radiation was produced by a 900 MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain. (C) 2016 Elsevier B.V. All rights reserved.Gazi University Research FoundationGazi University [01/2003-62]EM Field measurements were performed with the devices purchased by a grant from the Gazi University Research Foundation Project No: 01/2003-62
    corecore