339 research outputs found

    Insecticide resistance selection and reversal in two strains of Aedes aegypti

    Get PDF
    Background: Laboratory reared mosquito colonies are essential tools to understand insecticide action. However, they differ considerably from wild populations and from each other depending on their origin and rearing conditions, which makes studying the effects of specific resistance mechanisms difficult. This paper describes our methods for establishing multiple resistant strains of Aedes aegypti from two colonies as a new resource for further research on metabolic and target site resistance. Methods: Two resistant colonies of Ae. aegypti, from Cayman and Recife, were selected through 10 generations of exposure to insecticides including permethrin, malathion and temephos, to yield eight strains with different profiles of resistance due to either target site or metabolic resistance. Resistance ratios for each insecticide were calculated for the selected and unselected strains. The frequency of kdr alleles in the Cayman strains was determined using TaqMan assays. A comparative gene expression analysis among Recife strains was conducted using qPCR in larvae (CCae3A, CYP6N12, CYP6F3, CYP9M9) and adults (CCae3A, CYP6N12, CYP6BB2, CYP9J28a). Results: In the selected strain of Cayman, mortality against permethrin reduced almost to 0% and kdr became fixated by 5 generations. A similar phenotype was seen in the unselected homozygous resistant colony, whilst mortality in the susceptible homozygous colony rose to 82.9%. The Recife strains showed different responses between exposure to adulticide and larvicide, with detoxification genes in the temephos selected strain staying similar to the baseline, but a reduction in detoxification genes displayed in the other strains. Conclusions: These selected strains, with a range of insecticide resistance phenotypes and genotypes, will support further research on the effects of target-site and/or metabolic resistance mechanisms on various life-history traits, behaviours and vector competence of this important arbovirus vector

    Nitrogen Budgets of Phloem-Feeding Bark Beetles with and without Symbiotic Fungi

    Get PDF
    The nitrogen content of plant tissue is low relative to that of herbivores; as a consequence, dietary N can limit the growth and reproduction of herbivores and select for attributes that increase N acquisition. Bark beetles face a particularly severe challenge because the phloem that they consume is very low in nitrogen and phosphorus relative to their requirements. We quantified variation in the phloem concentrations of N and P in the host tree, Pinus taeda, and evaluated the following hypotheses regarding the role of symbiotic fungi in nutrient budgets of the herbivore Dendroctonus frontalis: D. frontalis experience variation in phloem nutrient concentrations across several spatial scales (H1); mycangial fungi enhance the diet of D. frontalis larvae by contributing to the acquisition of N and P (H2); Ophiostoma minus, an apparently antagonistic fungal symbiont, hinders D. frontalis larvae because it does not enhance nutrient concentrations of the phloem as much as mycangial fungi do (H3); and larvae of bark beetle species that lack mycangial fungi must consume more phloem to accomplish the same growth as larvae of D. frontalis (H4). In addition, we developed a general model for the N budgets of herbivorous insects that identifies the possible combinations of dietary and physiological parameters that can allow developmental success on low‐nutrient diets. Spatial variation in phloem N was mostly at the level of trees within sites (a scale of meters) while P mostly varied among sites (a scale of kilometers). Trees with higher N content produced larger D. frontalis adults. Prior to infestation by beetles, phloem nutrient concentrations were very uniform within trees and very low relative to that of the bark beetles (N and P concentrations of D. frontalis adults were 28 and 8 times greater, respectively). During infestation, phloem nutrient concentrations increased overall and became highly variable within trees. Nitrogen concentrations increased from 0.40 ± 0.01% (mean ± 1 se) in uninfested phloem to 0.86 ± 0.03% in the phloem surrounding successfully developing D. frontalis larvae, which are typically associated with one or two species of mutualistic mycangial fungi. Nitrogen concentrations were intermediate in other microhabitats within infested trees, including regions with no adult colonization, with failed larval development, or colonized by the antagonistic bluestain fungus O. minus. We parameterized a general nutrient‐budget model for D. frontalis and a sympatric non‐mycangial bark beetle, Ips grandicollis, which indicated that (1) mycangial fungi provide their benefits by concentrating dietary N for larvae; (2) O. minus may exert its antagonistic effects on D. frontalis larvae by failing to concentrate dietary N as much as mycangial fungi do; (3) non‐mycangial bark beetles meet their N budgets through high consumption of unaltered, low‐N phloem; and (4) larvae should easily meet their P requirements with any combination of consumption rate and development time that allows them to meet their N requirements. Alternative strategies for N acquisition may have general consequences for the population dynamics and community interactions of bark beetles

    Lifshitz transition enabling superconducting dome around the quantum critical point in TiSe2_2

    Full text link
    Superconductivity often emerges as a dome around a quantum critical point (QCP) where long-range order is suppressed to zero temperature. So far, this has been mostly studied in magnetically ordered materials. By contrast, the interplay between charge order and superconductivity at a QCP is not fully understood. Here, we present resistance measurements proving that a dome of superconductivity surrounds the charge-density-wave (CDW) QCP in pristine samples of 1TT-TiSe2_2 tuned with hydrostatic pressure. Furthermore, we use quantum oscillation measurements to show that the superconductivity sets in at a Lifshitz transition in the electronic band structure. We use density functional theory to identify the Fermi pockets enabling superconductivity: large electron and hole pockets connected by the CDW wave vector Q\vec{Q} which emerge upon partial suppression of the zero-pressure CDW gap. Hence, we conclude that superconductivity is of interband type enabled by the presence of hole and electron bands connected by the CDW Q\vec{Q} vector. Earlier calculations show that interband interactions are repulsive, which suggests that unconventional s±_{\pm} superconductivity is realised in TiSe2_2 - similar to the iron pnictides. These results highlight the importance of Lifshitz transitions in realising unconventional superconductivity and help understand its interaction with CDW order in numerous materials.Comment: 21 pages, 5 figure
    corecore