150 research outputs found
Diesel particulate matter emission factors and air quality implications from in–service rail in Washington State, USA
AbstractWe sought to evaluate the air quality implications of rail traffic at two sites in Washington State. Our goals were to quantify the exposure to diesel particulate matter (DPM) and airborne coal dust from current trains for residents living near the rail lines and to measure the DPM and black carbon emission factors (EFs). We chose two sites in Washington State, one at a residence along the rail lines in the city of Seattle and one near the town of Lyle in the Columbia River Gorge (CRG). At each site, we made measurements of size–segregated particulate matter (PM1, PM2.5 and PM10), CO2 and meteorology, and used a motion–activated camera to capture video of each train for identification. We measured an average DPM EF of 0.94g/kg diesel fuel, with an uncertainty of 20%, based on PM1 and CO2 measurements from more than 450 diesel trains. We found no significant difference in the average DPM EFs measured at the two sites. Open coal trains have a significantly higher concentration of particles greater than 1μm diameter, likely coal dust. Measurements of black carbon (BC) at the CRG site show a strong correlation with PM1 and give an average BC/DPM ratio of 52% from diesel rail emissions. Our measurements of PM2.5 show that living close to the rail lines significantly increases PM2.5 exposure. For the one month of measurements at the Seattle site, the average PM2.5 concentration was 6.8μg/m3 higher near the rail lines compared to the average from several background locations. Because the excess PM2.5 exposure for residents living near the rail lines is likely to be linearly related to the diesel rail traffic density, a 50% increase in rail traffic may put these residents over the new U.S. National Ambient Air Quality Standards, an annual average of 12μg/m3
The importance of human dimensions research in managing harmful algal blooms
Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 8 (2010): 75–83, doi:10.1890/070181.Harmful algal blooms (HABs) are natural freshwater and marine hazards that impose substantial adverse impacts on the human use of coastal and marine resources. The socioeconomic and health impacts of HABs can be considerable, thereby making a case for “human dimensions” research to support HAB response. Human dimensions research is multidisciplinary, integrating social science, humanities, and other fields with natural science to enhance resource management by addressing human causes, consequences, and responses to coastal environmental problems. Case studies reported here illustrate the importance of human dimensions research. Incorporating such research into the scientific agenda – as well as into management decisions of public agencies concerned with natural resource management, environmental protection, and public health and welfare – requires the development of both strategic guidance and institutional capacity. The recent development of a multi-agency research strategy for HAB response and a strategic plan for human dimensions research represent two important steps in this direction.This paper was developed with partial support from
NOAA’s National Centers for Coastal and Ocean Science
It Takes Two
Theories of conflict emphasize dyadic interaction, yet existing empirical studies of civil war focus largely on state attributes and pay little attention to nonstate antagonists. We recast civil war in a dyadic perspective, and consider how nonstate actor attributes and their relationship to the state influence conflict dynamics. We argue that strong rebels, who pose a military challenge to the government, are likely to lead to short wars and concessions. Conflicts where rebels seem weak can become prolonged if rebels can operate in the periphery so as to defy a government victory yet are not strong enough to extract concessions. Conflicts should be shorter when potential insurgents can rely on alternative political means to violence. We examine these hypotheses in a dyadic analysis of civil war duration and outcomes, using new data on nonstate actors and conflict attributes, finding support for many of our conjectures. </jats:p
The lifetime of nitrogen oxides in an isoprene-dominated forest
The lifetime of nitrogen oxides (NO_x) affects the concentration and distribution of NO_x and the spatial patterns of nitrogen deposition. Despite its importance, the lifetime of NO_x is poorly constrained in rural and remote continental regions. We use measurements from a site in central Alabama during the Southern Oxidant and Aerosol Study (SOAS) in summer 2013 to provide new insights into the chemistry of NO_x and NO_x reservoirs. We find that the lifetime of NO_x during the daytime is controlled primarily by the production and loss of alkyl and multifunctional nitrates (ΣANs). During SOAS, ΣAN production was rapid, averaging 90 ppt h^(−1) during the day, and occurred predominantly during isoprene oxidation. Analysis of the ΣAN and HNO_3 budgets indicate that ΣANs have an average lifetime of under 2 h, and that approximately 45 % of the ΣANs produced at this site are rapidly hydrolyzed to produce nitric acid. We find that ΣAN hydrolysis is the largest source of HNO_3 and the primary pathway to permanent removal of NO_x from the boundary layer in this location. Using these new constraints on the fate of ΣANs, we find that the NO_x lifetime is 11 ± 5 h under typical midday conditions. The lifetime is extended by storage of NO_x in temporary reservoirs, including acyl peroxy nitrates and ΣANs
Recommended from our members
The lifetime of nitrogen oxides in an isoprene-dominated forest
The lifetime of nitrogen oxides (NOx) affects the concentration and distribution of NOx and the spatial patterns of nitrogen deposition. Despite its importance, the lifetime of NOx is poorly constrained in rural and remote continental regions. We use measurements from a site in central Alabama during the Southern Oxidant and Aerosol Study (SOAS) in summer 2013 to provide new insights into the chemistry of NOx and NOx reservoirs. We find that the lifetime of NOx during the daytime is controlled primarily by the production and loss of alkyl and multifunctional nitrates (ΣANs). During SOAS, ΣAN production was rapid, averaging 90 ppt h-1 during the day, and occurred predominantly during isoprene oxidation. Analysis of the ΣAN and HNO3 budgets indicate that ΣANs have an average lifetime of under 2 h, and that approximately 45 % of the ΣANs produced at this site are rapidly hydrolyzed to produce nitric acid. We find that ΣAN hydrolysis is the largest source of HNO3 and the primary pathway to permanent removal of NOx from the boundary layer in this location. Using these new constraints on the fate of ΣANs, we find that the NOx lifetime is 11 ± 5 h under typical midday conditions. The lifetime is extended by storage of NOx in temporary reservoirs, including acyl peroxy nitrates and ΣANs.</p
The lifetime of nitrogen oxides in an isoprene-dominated forest
The lifetime of nitrogen oxides (NO_x) affects the concentration and distribution of NO_x and the spatial patterns of nitrogen deposition. Despite its importance, the lifetime of NO_x is poorly constrained in rural and remote continental regions. We use measurements from a site in central Alabama during the Southern Oxidant and Aerosol Study (SOAS) in summer 2013 to provide new insights into the chemistry of NO_x and NO_x reservoirs. We find that the lifetime of NO_x during the daytime is controlled primarily by the production and loss of alkyl and multifunctional nitrates (ΣANs). During SOAS, ΣAN production was rapid, averaging 90 ppt h^(−1) during the day, and occurred predominantly during isoprene oxidation. Analysis of the ΣAN and HNO_3 budgets indicate that ΣANs have an average lifetime of under 2 h, and that approximately 45 % of the ΣANs produced at this site are rapidly hydrolyzed to produce nitric acid. We find that ΣAN hydrolysis is the largest source of HNO_3 and the primary pathway to permanent removal of NO_x from the boundary layer in this location. Using these new constraints on the fate of ΣANs, we find that the NO_x lifetime is 11 ± 5 h under typical midday conditions. The lifetime is extended by storage of NO_x in temporary reservoirs, including acyl peroxy nitrates and ΣANs
LEARN: A multi-centre, cross-sectional evaluation of Urology teaching in UK medical schools
OBJECTIVE: To evaluate the status of UK undergraduate urology teaching against the British Association of Urological Surgeons (BAUS) Undergraduate Syllabus for Urology. Secondary objectives included evaluating the type and quantity of teaching provided, the reported performance rate of General Medical Council (GMC)-mandated urological procedures, and the proportion of undergraduates considering urology as a career. MATERIALS AND METHODS: LEARN was a national multicentre cross-sectional study. Year 2 to Year 5 medical students and FY1 doctors were invited to complete a survey between 3rd October and 20th December 2020, retrospectively assessing the urology teaching received to date. Results are reported according to the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). RESULTS: 7,063/8,346 (84.6%) responses from all 39 UK medical schools were included; 1,127/7,063 (16.0%) were from Foundation Year (FY) 1 doctors, who reported that the most frequently taught topics in undergraduate training were on urinary tract infection (96.5%), acute kidney injury (95.9%) and haematuria (94.4%). The most infrequently taught topics were male urinary incontinence (59.4%), male infertility (52.4%) and erectile dysfunction (43.8%). Male and female catheterisation on patients as undergraduates was performed by 92.1% and 73.0% of FY1 doctors respectively, and 16.9% had considered a career in urology. Theory based teaching was mainly prevalent in the early years of medical school, with clinical skills teaching, and clinical placements in the later years of medical school. 20.1% of FY1 doctors reported no undergraduate clinical attachment in urology. CONCLUSION: LEARN is the largest ever evaluation of undergraduate urology teaching. In the UK, teaching seemed satisfactory as evaluated by the BAUS undergraduate syllabus. However, many students report having no clinical attachments in Urology and some newly qualified doctors report never having inserted a catheter, which is a GMC mandated requirement. We recommend a greater emphasis on undergraduate clinical exposure to urology and stricter adherence to GMC mandated procedures
Revisiting the Gaia Hypothesis: Maximum Entropy, Kauffman’s ‘Fourth Law’ and Physiosemeiosis
Recently, Kleidon suggested to analyze Gaia as a non-equilibrium
thermodynamic system that continuously moves away from equilibrium, driven by
maximum entropy production which materializes in hierarchically coupled
mechanisms of energetic flows via dissipation and physical work. I relate this
view with Kauffman's 'Fourth Law of Thermodynamics', which I interprete as a
proposition about the accumulation of information in evolutionary processes.
The concept of physical work is expanded to including work directed at the
capacity to work: I offer a twofold specification of Kauffman's concept of an
'autonomous agent', one as a 'self-referential heat engine', and the other in
terms of physiosemeiosis, which is a naturalized application of Peirce's theory
of signs. The conjunction of these three theoretical sources, Maximum Entropy,
Kauffman's Fourth Law, and physiosemeiosis, shows that the Kleidon restatement
of the Gaia hypothesis is equivalent to the proposition that the biosphere is
generating, processing and storing information, thus directly treating
information as a physical phenomenon. There is a fundamental ontological
continuity between the biological processes and the human economy, as both are
seen as information processing and entropy producing systems. Knowledge and
energy are not substitutes, with energy and information being two aspects of
the same underlying physical process
- …