17 research outputs found

    Renoprotective effect of tectorigenin glycosides isolated from Iris spuria L. (Zeal) against hyperoxaluria and hyperglycemia in NRK-49Fcells

    Get PDF
    Oxidative stress has been identified as an underlying factor in the development of insulin resistance, β-cell dysfunction, impaired glucose tolerance and type 2 diabetes mellitus and it also play major role in kidney stone formation. The present study is aimed to elucidate the in vitro nephroprotective activity of two isoflavonoid glycosides, tectorigenin 7-O-β-D-glucosyl-(1→6)-β-D-glucoside (1) and tectorigenin 7-O-β-D-glucosyl-4'-O-β-D-glucoside (2) isolated from the n-BuOH fraction of Iris spuria L. (Zeal) rhizome MeOH extract against oxalate and high glucose-induced oxidative stress in NRK-49F cells. The results revealed that compounds 1 and 2 significantly increased the antioxidant enzyme activities and decreased MDA levels in both oxalate and high glucose stress. Treatment with these phytochemicals effectively down-regulated expression of crystal modulator genes and pro-fibrotic genes in oxalate and high glucose-mediated stress respectively. This study indicates cytoprotective, antioxidant, anti-urolithic and anti-diabetic effects of compounds 1 and 2 against oxalate and high glucose stress

    Chemical Profile of Cyperus laevigatus and Its Protective Effects against Thioacetamide-Induced Hepatorenal Toxicity in Rats

    Get PDF
    Cyperus species represent a group of cosmopolitan plants used in folk medicine to treat several diseases. In the current study, the phytochemical profile of Cyperus laevigatus ethanolic extract (CLEE) was assessed using UPLC-QTOF–MS/MS. The protective effect of CLEE at 50 and 100 mg /kg body weight (b.w.) was evaluated on hepatorenal injuries induced by thioacetamide (100 mg/kg) via investigation of the extract’s effects on oxidative stress, inflammatory markers and histopathological changes in the liver and kidney. UPLC-QTOF–MS/MS analysis of CLEE resulted in the identification of 94 compounds, including organic and phenolic acids, flavones, aurones, and fatty acids. CLEE improved the antioxidant status in the liver and kidney, as manifested by enhancement of reduced glutathione (GSH) and coenzyme Q10 (CoQ10), in addition to the reduction in malondialdehyde (MDA), nitric oxide (NO), and 8-hydroxy-2′-deoxyguanosine (8OHdG). Moreover, CLEE positively affected oxidative stress parameters in plasma and thwarted the depletion of hepatorenal ATP content by thioacetamide (TAA). Furthermore, treatment of rats with CLEE alleviated the significant increase in plasma liver enzymes, kidney function parameters, and inflammatory markers. The protective effect of CLEE was confirmed by a histopathological study of the liver and kidney. Our results proposed that CLEE may reduce TAA-hepatorenal toxicity via its antioxidant and anti-inflammatory properties suppressing oxidative stress

    Chemical and biological characterization of Melaleuca subulata (Cheel) Craven leaves’ volatile constituents supported by chemometric analysis and molecular docking

    No full text
    Abstract Background The genus Melaleuca (Myrtaceae) comprises dozens of essential oil (EO)-rich species that are appreciated worldwide for their various medicinal values. Additionally, they are renowned in traditional medicine for their antimicrobial, antifungal, and other skin-related activities. The current study investigated the chemical profile and skin-related activities of volatile constituents derived from M. subulata (Cheel) Craven (Synonym Callistemon subulatus) leaves cultivated in Egypt for the first time. Methods The volatile components were extracted using hydrodistillation (HD), headspace (HS), and supercritical fluid (SF). GC/MS and Kovat’s retention indices were implemented to identify the volatile compounds, while the variations among the components were assessed using Principal Component Analysis and Hierarchical Cluster Analysis. The radical scavenging activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC) and β-carotene assays. Moreover, the anti-aging effect was evaluated using anti-elastase, and anti-collagenase, while the antimicrobial potential was deduced from the agar diffusion and broth microdilution assays. Lastly, the molecular docking study was executed using C-docker protocol in Discovery Studio 4.5 to rationalize the binding affinity with targeted enzymes. Results The SF extraction approach offered the highest EO yield, being 0.75%. According to the GC/MS analysis, monoterpene hydrocarbons were the most abundant volatile class in the HD oil sample (54.95%), with α-pinene being the most copious component (35.17%). On the contrary, the HS and SF volatile constituents were pioneered with oxygenated monoterpenes (72.01 and 36.41%) with eucalyptol and isopulegone being the most recognized components, representing 67.75 and 23.46%, respectively. The chemometric analysis showed segregate clustering of the three extraction methods with α-pinene, eucalyptol, and isopulegone serving as the main discriminating phytomarkers. Concerning the bioactivity context, both SF and HD-EOs exhibited antioxidant effects in terms of ORAC and β-carotene bleaching. The HD-EO displayed potent anti-tyrosinase activity, whereas the SF-EO exhibited significant anti-elastase properties. Moreover, SF-EO shows selective activity against gram-positive skin pathogens, especially S. aureus. Ultimately, molecular docking revealed binding scores for the volatile constituents; analogous to those of the docked reference drugs. Conclusions M. subulata leaves constitute bioactive volatile components that may be indorsed as bioactive hits for managing skin aging and infection, though further in vivo studies are recommended

    Euryops pectinatus L. Flower Extract Inhibits P-glycoprotein and Reverses Multi-Drug Resistance in Cancer Cells: A Mechanistic Study

    No full text
    Euryops pectinatus is a South African ornamental plant belonging to family Asteraceae. The present work evaluates the cytotoxic activity and phytochemical profile of the flower extract. Metabolite profiling was performed using HPLC-PDA-ESI-MS/MS. Total phenolics and flavonoids content were assessed. Cytotoxicity was evaluated against 6 different cancer cell lines using MTT assay. The possible underlying mechanism was proposed. We analyzed whether the extract could overcome the resistance of multidrug-resistant cancer cells for doxorubicin. The effect of combination of E. pectinatus with doxorubicin was also studied. Additionally, the potential inhibitory activity of the identified phytochemicals to PB1 protein was analyzed using in silico molecular docking. Twenty-five compounds were tentatively identified. Total phenolic and flavonoid contents represented 49.41 ± 0.66 and 23.37 ± 0.23 µg/mg dried flower extract, respectively. The extract showed selective cytotoxicity against Caco2 cells but its main effect goes beyond mere cytotoxicity. It showed strong inhibition of P-glycoprotein, which helps to overcome multidrug resistance to classical chemotherapeutic agents. In silico molecular docking showed that dicaffeoyl quinic acid, kaempferol-O-rutinoside, rutin, and isorhamnetin-O-rutinoside exhibited the most potent inhibitory activity to PB1 involved in tumor progression. Euryops pectinatus flower heads could have promising selective cytotoxicity alone or in combination with other chemotherapeutic agents to counteract multidrug resistance

    A Multifaceted Review of Eurycoma longifolia Nutraceutical Bioactives: Production, Extraction, and Analysis in Drugs and Biofluids

    No full text
    [Image: see text] Eurycoma longifolia Jack (known as Tongkat Ali) is a popular traditional herbal medicine, native to southeast Asia, that is well-known for its aphrodisiac as well as several other effects. Mostly, the root extract of E. longifolia is used as a folk medicine for sexual dysfunction, aging, anxiety, exercise recovery, fever, increased energy, and osteoporosis. These health effects led to the inclusion of E. longifolia in dietary supplements, particularly for bodybuilding purposes. These effects are mediated by a myriad of bioactive compounds belonging to quassinoids, canthin-6-one alkaloids, tirucallane triterpenes, squalene derivatives, and bioactive steroids. Among these phytoconstituents, quassinoids account for a large portion of E. longifolia root phytochemicals. Of these ingredients, eurycomanone, the major quassinoid in E. longifolia extract, accounts to a large extent for its health effects. This review capitalizes on the novel trends toward the production of E. longifolia bioactives using biotechnology and extraction optimization for best yields and recovery. Alongside, novel extraction methods, i.e., green techniques, of E. longifolia bioactives are described. Further, an overview of the different analytical approaches for the quality control assessment of E. longifolia plant material and nutraceuticals is presented alongside studies in body fluids to determine its pharmacokinetics and efficacy level. Such a compilation of analytical methods will help ensure safety and efficacy of that major drug

    Metabolic profiling, antioxidant, and enzyme inhibition potential of Iris pseudacorus L. from Egypt and Japan: A comparative study

    No full text
    Abstract Genus Iris comprises numerous and diverse phytoconstituents displaying marked biological activities. The rhizomes, and aerial parts of Iris pseudacorus L. cultivars from Egypt and Japan were subjected to comparative metabolic profiling using UPLC-ESI-MS/MS. The antioxidant capacity was determined using DPPH assay. In vitro enzyme inhibition potential against α-glucosidase, tyrosinase and lipase was evaluated. In silico molecular docking was conducted on the active sites of human α-glucosidase and human pancreatic lipase. Forty-three compounds were tentatively identified including flavonoids, isoflavonoids, phenolics and xanthones. I. pseudacorus rhizomes extracts (IPR-J and IPR-E) exhibited the highest radical scavenging activity with IC50 values of 40.89 µg/mL and 97.97 µg/mL, respectively (Trolox IC50 value was 14.59 µg/mL). Moreover, IPR-J and IPR-E exhibited promising α-glucosidase inhibitory activity displaying IC50 values of 18.52 µg/mL, 57.89 µg/mL, respectively being more potent as compared to acarbose with IC50 value of 362.088 µg/mL. All extracts exerted significant lipase inhibitory activity exhibiting IC50 values of 2.35, 4.81, 2.22 and 0.42 µg/mL, respectively compared to cetilistat with IC50 value of 7.47 µg/mL. However, no tyrosinase inhibitory activity was observed for all I. pseudacorus extracts up to 500 µg/mL. In silico molecular modelling revealed that quercetin, galloyl glucose, and irilin D exhibited the highest fitting scores within the active sites of human α-glucosidase and pancreatic lipase. ADMET prediction (absorption, distribution, metabolism, excretion, and toxicity) showed that most of the phytoconstituents exhibited promising pharmacokinetic, pharmacodynamics and tolerable toxicity properties. According to our findings, I. pseudacorus might be considered as a valuable source for designing novel phytopharmaceuticals

    Phytoecdysteroids and Anabolic Effect of <i>Atriplex dimorphostegia</i>: UPLC-PDA-MS/MS Profiling, In Silico and In Vivo Models

    No full text
    Atriplex dimorphostegia (Saltbush) is an annual halophytic shrub that is widely distributed across various parts of Asia. The current study is the first to report the metabolites profile of the total ethanol extract of the aerial parts of A. dimorphostegia (TEAD), and its anabolic activity together with the isolated 20-hydroxyecdysone (20-HE) in orchidectomized male rats. TEAD was analyzed and standardized utilizing UPLC-PDA-ESI–MS/MS and UPLC-PDA-UV techniques, resulting in tentative identification of fifty compounds including polyphenols, steroids and triterpenoids. In addition, 20-HE was quantified, representing 26.79 μg/mg of the extract. Phytochemical investigation of TEAD resulted in the isolation of 20-HE from the ethyl acetate fraction (EFAD) and was identified by conventional spectroscopic methods of analysis. Furthermore, the anabolic effect of the isolated 20-HE and TEAD was then evaluated using in silico and in vivo models. Molecular docking experiments revealed in vitro selectivity of 20-HE towards estrogen receptors (ERs), specifically ERβ over ERα and androgenic receptor (AR). The anabolic efficacy of TEAD and 20-HE was studied in orchidectomized immature male Wistar rats using the weight of gastrocnemius and soleus muscles. The weights of ventral prostate and seminal vesicles were used as indicators for androgenic activity. Rats administered 20-HE and TEAD showed a significant increase (p = 0.0006 and p p p > 0.99. A. dimorphostegia exhibited promising anabolic activity with minimal androgenic side effects

    GC-MS profiling of <i>Vitex pinnata</i> bark lipophilic extract and screening of its anti-TB and cytotoxic activities

    No full text
    Tuberculosis is a highly infectious ailment worldwide. The emergence of multi-drug resistance and serious adverse effects of anti-TB drugs have led to the continuous search of natural candidates. This study aimed to analyse the chemical profile of Vitex pinnata (VP) bark lipophilic extract using GC-MS also evaluating its anti-TB and cytotoxic activities. GC-MS revealed a total of 81 compounds which representing 86% identified compounds. In vitro anti-TB of VP lipophilic extract was evaluated using the Microplate Alamar Blue Assay which exhibited MIC value of 62.5 µg/mL. In vitro cytotoxicity was evaluated using Water Soluble formazan assay recording IC50 > 100 and 200 µg/mL using Vero and A-549 cell lines, respectively. In silico docking study was performed on the major identified compounds, n-nonane showed the most favourable binding affinity (ΔG) equals to −33.34 Kcal/mol. The results obtained herein unravelled the potential use of VP n-hexane extract as a natural anti-TB.</p

    Comparative metabolic profiling of olive leaf extracts from twelve different cultivars collected in both fruiting and flowering seasons

    No full text
    Abstract Olea europaea is an economically significant crop native to Mediterranean countries. Its leaves exhibit several biological properties associated to their chemical composition. The aqueous ethanolic extracts of olive leaves from twelve different cultivars were analyzed by high performance liquid chromatography coupled to photodiode array and electrospray ionization mass spectrometry (HPLC/PDA/ESI–MS/MS). A total of 49 phytochemicals were identified in both positive and negative ionization modes. The identified compounds belonged to four classes of secondary metabolites including secoiridoids, flavonoids, pentacyclic triterpenoids and various phenolic compounds. Seasonal variation in chemical composition among the studied cultivars was apparent in autumn and spring. Secologanoside, oleuropein, hydroxy-oleuropein, demethyl oleuropein, gallocatechin, luteolin-O-hexoside, diosmetin, oleanolic acid and maslinic acid were detected in all cultivars in both seasons. Oleuropein-O-deoxyhexoside was tentatively identified for the first time in olive leaf extracts; detected only in the Spanish cultivar Picual (PIC) collected in spring. Also, dihydroxy-oxooleanenoic acid and hydroxy-oxooleanenoic acid, two bioactive pentacyclic triterpenes, were identified. Principle component analysis (PCA) showed good discrimination among the studied cultivars in terms of their botanical origin. This study is considered the first study for non-targeted metabolic profiling of different olive leaf cultivars cultivated in Egypt

    Valorization of Pimenta racemosa Essential Oils and Extracts: GC-MS and LC-MS Phytochemical Profiling and Evaluation of Helicobacter pylori Inhibitory Activity

    No full text
    Pimenta racemosa is a commonly known spice used in traditional medicine to treat several ailments. In this study, comprehensive phytochemical profiling of the essential oils and methanol extracts of P. racemosa leaves and stems was performed, alongside assessing their potential Helicobacter pylori inhibitory activity in vitro and in silico. The essential oils were chemically profiled via GC-MS. Moreover, the methanol extracts were profiled using HPLC-PDA-ESI-MS/MS. The antibacterial activity of the essential oils and methanol extracts against H. pylori was determined by adopting the micro-well dilution method. GC-MS analysis unveiled the presence of 21 constituents, where eugenol represented the major component (57.84%) and (59.76%) in both leaves and stems of essential oils, respectively. A total of 61 compounds were annotated in both leaves and stems of P. racemosa methanolic extracts displaying richness in phenolic compounds identified as (epi)catechin and (epi)gallocatechin monomers and proanthocyanidins, hydrolyzable tannin derivatives (gallotannins), flavonoids, and phenolic acids. The stem essential oil showed the most promising inhibitory effects on H. pylori, exhibiting an MIC value of 3.9 &micro;g/mL, comparable to clarithromycin with an MIC value of 1.95 &micro;g/mL. Additionally, in silico molecular modeling studies revealed that decanal, eugenol, terpineol, delta-cadinene, and amyl vinyl showed potential inhibitory activity on H. pylori urease as demonstrated by high-fitting scores indicating good binding to the active sites. These findings indicate that P. racemosa comprises valuable phytochemical constituents with promising therapeutic effects, particularly the stem, an economic agro-industrial waste
    corecore