4 research outputs found

    (R1523) Abundant Natural Resources, Ethnic Diversity and Inclusive Growth in Sub-Saharan Africa: A Mathematical Approach

    Get PDF
    The sub-Saharan African region is blessed with abundant natural resources and diverse ethnic groups, yet the region is dominated by the largest number of poor people worldwide due to inequitable distribution of national income. Existing statistics forecast decay in the quality of lives over the years compared to the continent of Asia that shares similar history with the region. In this paper, a-five dimensional first-order nonlinear ordinary differential equations was formulated to give insight into various factors that shaped dynamics of inclusive growth in sub-Saharan Africa. The validity test was performed based on ample mathematical theorems and the model was found to be valid. The model was then studied qualitatively and quantitatively via stability theory of nonlinear differential equations which depended on the policy success ratio and classical fourth-order Runge-Kutta scheme implemented in maple respectively. The results from the analysis showed that inclusive growth from abundant natural resources and ethnic diversity in sub-Saharan Africa was a function of policy reform whereby an increase in both equitable distribution of national income and accessibility of common man to the goods and services provided by the state to narrow inequality gap was accompanied with a low level of nepotism

    Global sensitivity analysis and optimal control of Typhoid fever transmission dynamics

    Get PDF
    This paper presents a mathematical model aimed at studying the global behaviour and optimal control strategies for Typhoid fever. The primary objective of this study is to identify the most effective control strategy that minimizes the spread of the disease. To achieve this, we calculate the effective and basic reproduction numbers and utilize them to investigate the existence and stability of the equilibria. Furthermore, we investigate the global impact of each model parameter on the variables using Latin Hypercube Sampling and Partial Rank Correlation Coefficient. The necessary conditions of the optimal control problem are analyzed using Pontryagin’s maximum principle, and the numerical values of the model parameters are estimated using the maximum likelihood estimator. The results indicate that the optimal use of vaccination for susceptible individuals, as well as the screening and treatment of asymptomatic infected individuals, have a significant impact on reducing the spread of the disease in endemic regions

    A high performance liquid chromatographic assay of Mefloquine in saliva after a single oral dose in healthy adult Africans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mefloquine-artesunate is a formulation of artemisinin based combination therapy (ACT) recommended by the World Health Organization and historically the first ACT used clinically. The use of ACT demands constant monitoring of therapeutic efficacies and drug levels, in order to ensure that optimum drug exposure is achieved and detect reduced susceptibility to these drugs. Quantification of anti-malarial drugs in biological fluids other than blood would provide a more readily applicable method of therapeutic drug monitoring in developing endemic countries. Efforts in this study were devoted to the development of a simple, field applicable, non-invasive method for assay of mefloquine in saliva.</p> <p>Methods</p> <p>A high performance liquid chromatographic method with UV detection at 220 nm for assaying mefloquine in saliva was developed and validated by comparing mefloquine concentrations in saliva and plasma samples from four healthy volunteers who received single oral dose of mefloquine. Verapamil was used as internal standard. Chromatographic separation was achieved using a Hypersil ODS column.</p> <p>Results</p> <p>Extraction recoveries of mefloquine in plasma or saliva were 76-86% or 83-93% respectively. Limit of quantification of mefloquine was 20 ng/ml. Agreement between salivary and plasma mefloquine concentrations was satisfactory (r = 0.88, <it>p </it>< 0.001). Saliva:plasma concentrations ratio was 0.42.</p> <p>Conclusion</p> <p>Disposition of mefloquine in saliva paralleled that in plasma, making salivary quantification of mefloquine potentially useful in therapeutic drug monitoring.</p

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore