4 research outputs found

    Dust environment and dynamical history of a sample of short-period comets: II. 81P/Wild 2 and 103P/Hartley 2

    Full text link
    Aims. This paper is a continuation of the first paper in this series, where we presented an extended study of the dust environment of a sample of short-period comets and their dynamical history. On this occasion, we focus on comets 81P/Wild 2 and 103P/Hartley 2, which are of special interest as targets of the spacecraft missions Stardust and EPOXI. Methods. As in the previous study, we used two sets of observational data: a set of images, acquired at Sierra Nevada and Lulin observatories, and the Afρ data as a function of the heliocentric distance provided by the amateur astronomical association Cometas-Obs. The dust environment of comets (dust loss rate, ejection velocities, and size distribution of the particles) was derived from our Monte Carlo dust tail code. To determine their dynamical history we used the numerical integrator Mercury 6.2 to ascertain the time spent by these objects in the Jupiter family Comet region. Results. From the dust analysis, we conclude that both 81P/Wild 2 and 103P/Hartley 2 are dusty comets, with an annual dust production rate of 2.8 × 109 kg yr-1 and (0.4-1.5) × 109 kg yr-1, respectively. From the dynamical analysis, we determined their time spent in the Jupiter family Comet region as ~40 yr in the case of 81P/Wild 2 and ~1000 yr for comet 103P/Hartley 2. These results imply that 81P/Wild 2 is the youngest and the most active comet of the eleven short-period comets studied so far, which tends to favor the correlation between the time spent in JFCs region and the comet activity previously discussed

    Differences in Emotion Regulation Considering Gender, Age, and Gambling Preferences in a Sample of Gambling Disorder Patients

    No full text
    Altres ajuts: This manuscript and research were supported by grants from the Instituto de Salud Carlos III (ISCIII) and cofounded by the FEDER funds/European Regional Development Fund (ERDF), a way to build Europe. CIBERobn and CIBERsam are initiatives of ISCIII. This work was also supported by the Delegación del Gobierno para el Plan Nacional sobre Drogas(2017I067).Introduction: Impairments in emotion regulation are understood to be a transdiagnostic risk factor of suffering from compulsive and addictive behaviors. The aim of this study was to investigate the role of emotion regulation deficits in gambling disorder and to analyze these differences taking gender, age, and gambling activity preferences into account. Methods: The sample included n = 484 patients seeking treatment for gambling disorder at a specialized outpatient service. Main outcomes were sociodemographic variables, emotion regulation, and gambling severity. Results: Differences between sexes were found in non-acceptance of emotions. Older patients obtained higher levels in non-acceptance of emotions, lack of emotion regulation strategies, emotional clarity, and global emotion regulation scores. No differences were found in emotion scores considering gambling preferences (non-strategic versus strategic). Path analysis showed that emotion regulation scores and age had a direct effect on gambling disorder severity, while emotion regulation and gambling preference were not mediational variables in the relationships of gender and age with gambling severity. Conclusions: Emotion regulation impairments differ in patients seeking treatment for gambling problems. Early prevention and intervention programs should incorporate the different dimensions of this process, taking into account clinical phenotypes

    On the dust environment of comet C/2012 S1 (ISON) from 12 AU pre-perihelion to the end of its activity around perihelion

    Full text link
    A Monte Carlo dust tail model has been applied to extract the dust environment parameters of the comet C/2012 S1 (ISON) from both Earth-based and SOHO LASCO C3 observations, performed from about six astronomical units (AU) inbound, to just after perihelion passage, when only a small portion of the original comet nucleus has survived in the form of a cloud of tiny particles. The early Afρ and image data are consistent with particle ejection from an extended active area located at latitudes 35°N to 90°N (for a prograde rotating nucleus), with the spin axis having a large obliquity (I 70°). This configuration nicely fits the early images and Afρ data until 3.9 AU inbound, when the emission should become isotropic in order to fit the data. The analysis of LASCO images reveals that, assuming an original nucleus of R N = 500 m with ρ = 1000 kg m-3, at least half of its mass was vaporized when the comet was at about 17 R ⊙ inbound. We conclude that at that time the nucleus suffered a cataclysmic fragmentation releasing a huge amount of material of 2.3 ×1011 kg, equivalent to a sphere of 380 m in radius with density 1000 kg m-3. The surviving material after perihelion passage consists of very small dust particles of 0.1-50 μm in radius with a total mass of just 6.7×10 8 kg. © 2014. The American Astronomical Society. All rights reserved

    Dust environment and dynamical history of a sample of short-period comets

    Full text link
    Aims. In this work, we present an extended study of the dust environment of a sample of short-period comets and their dynamical history. With this aim, we characterize the dust tails when the comets are active, and we make a statistical study to determine their dynamical evolution. The targets selected were 22P/Kopff, 30P/Reinmuth 1, 78P/Gehrels 2, 115P/Maury, 118P/Shoemaker-Levy 4, 123P/West-Hartley, 157P/Tritton, 185/Petriew, and P/2011 W2 (Rinner). Methods. We use two different observational data sets: a set of images taken at the Observatorio de Sierra Nevada and, the Afρ curves provided by the amateur astronomical association Cometas-Obs. To model these observations, we use our Monte Carlo dust tail code. From this analysis, we derive the dust parameters, which best describe the dust environment: dust loss rates, ejection velocities, and size distribution of particles. On the other hand, we use a numerical integrator to study the dynamical history of the comets, which allows us to determine with a 90% confidence level the time spent by these objects in the region of Jupiter family comets. Results. From the Monte Carlo dust tail code, we derived three categories according to the amount of dust emitted: weakly active (115P, 157P, and Rinner), moderately active (30P, 123P, and 185P), and highly active (22P, 78P, and 118P). The dynamical studies showed that the comets of this sample are young in the Jupiter family region, where the youngest ones are 22P (~100 yr), 78P (~500 yr), and 118P (~600 yr). The study points to a certain correlation between comet activity and time spent in the Jupiter family region, although this trend is not always fulfilled. The largest particle sizes are not tightly constrained, so that the total dust mass derived should be regarded as a lower limit. © 2014 ESO
    corecore