192 research outputs found

    Notes on the integration of numerical relativity waveforms

    Full text link
    A primary goal of numerical relativity is to provide estimates of the wave strain, hh, from strong gravitational wave sources, to be used in detector templates. The simulations, however, typically measure waves in terms of the Weyl curvature component, ψ4\psi_4. Assuming Bondi gauge, transforming to the strain hh reduces to integration of ψ4\psi_4 twice in time. Integrations performed in either the time or frequency domain, however, lead to secular non-linear drifts in the resulting strain hh. These non-linear drifts are not explained by the two unknown integration constants which can at most result in linear drifts. We identify a number of fundamental difficulties which can arise from integrating finite length, discretely sampled and noisy data streams. These issues are an artifact of post-processing data. They are independent of the characteristics of the original simulation, such as gauge or numerical method used. We suggest, however, a simple procedure for integrating numerical waveforms in the frequency domain, which is effective at strongly reducing spurious secular non-linear drifts in the resulting strain.Comment: 23 pages, 10 figures, matches final published versio

    Characteristic extraction in numerical relativity: binary black hole merger waveforms at null infinity

    Full text link
    The accurate modeling of gravitational radiation is a key issue for gravitational wave astronomy. As simulation codes reach higher accuracy, systematic errors inherent in current numerical relativity wave-extraction methods become evident, and may lead to a wrong astrophysical interpretation of the data. In this paper, we give a detailed description of the Cauchy-characteristic extraction technique applied to binary black hole inspiral and merger evolutions to obtain gravitational waveforms that are defined unambiguously, that is, at future null infinity. By this method we remove finite-radius approximations and the need to extrapolate data from the near zone. Further, we demonstrate that the method is free of gauge effects and thus is affected only by numerical error. Various consistency checks reveal that energy and angular momentum are conserved to high precision and agree very well with extrapolated data. In addition, we revisit the computation of the gravitational recoil and find that finite radius extrapolation very well approximates the result at \scri. However, the (non-convergent) systematic differences to extrapolated data are of the same order of magnitude as the (convergent) discretisation error of the Cauchy evolution hence highlighting the need for correct wave-extraction.Comment: 41 pages, 8 figures, 2 tables, added references, fixed typos. Version matches published version

    Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors

    Full text link
    Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Eintein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.Comment: Appeared in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    Triangulation of gravitational wave sources with a network of detectors

    Get PDF
    There is significant benefit to be gained by pursuing multi-messenger astronomy with gravitational wave and electromagnetic observations. In order to undertake electromagnetic follow-ups of gravitational wave signals, it will be necessary to accurately localize them in the sky. Since gravitational wave detectors are not inherently pointing instruments, localization will occur primarily through triangulation with a network of detectors. We investigate the expected timing accuracy for observed signals and the consequences for localization. In addition, we discuss the effect of systematic uncertainties in the waveform and calibration of the instruments on the localization of sources. We provide illustrative results of timing and localization accuracy as well as systematic effects for coalescing binary waveforms.Comment: 20 pages, 5 figure

    The Current Status of Binary Black Hole Simulations in Numerical Relativity

    Full text link
    Since the breakthroughs in 2005 which have led to long term stable solutions of the binary black hole problem in numerical relativity, much progress has been made. I present here a short summary of the state of the field, including the capabilities of numerical relativity codes, recent physical results obtained from simulations, and improvements to the methods used to evolve and analyse binary black hole spacetimes.Comment: 14 pages; minor changes and corrections in response to referee

    Status of NINJA: the Numerical INJection Analysis project

    Get PDF
    The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this collaboration and the components of the first NINJA project, where numerical relativity groups shared waveforms and data analysis teams applied various techniques to detect them when embedded in colored Gaussian noise

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ

    Implications for the origin of GRB 051103 from LIGO observations

    Get PDF
    We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst (GRB) whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at a distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed γ-ray emission with a jet semi-angle of 30°, we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with \u3e99% confidence. If the event occurred in M81, then our findings support the hypothesis that GRB 051103 was due to an SGR giant flare, making it one of the most distant extragalactic magnetars observed to date. © 2012 The American Astronomical Society. All rights reserved

    Compact Binary Coalescences in the Band of Ground-based Gravitational-Wave Detectors

    Full text link
    As the ground-based gravitational-wave telescopes LIGO, Virgo, and GEO 600 approach the era of first detections, we review the current knowledge of the coalescence rates and the mass and spin distributions of merging neutron-star and black-hole binaries. We emphasize the bi-directional connection between gravitational-wave astronomy and conventional astrophysics. Astrophysical input will make possible informed decisions about optimal detector configurations and search techniques. Meanwhile, rate upper limits, detected merger rates, and the distribution of masses and spins measured by gravitational-wave searches will constrain astrophysical parameters through comparisons with astrophysical models. Future developments necessary to the success of gravitational-wave astronomy are discussed.Comment: Replaced with version accepted by CQG

    All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run

    Get PDF
    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration -1s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range ∼5×10-22Hz-1/2 to ∼1×10-20Hz-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors. © 2012 American Physical Society
    • …
    corecore