15 research outputs found

    Chemical and toxicological evaluation of an emerging pollutant (enrofloxacin) by catalytic wet air oxidation and ozonation in aqueous solution

    No full text
    This study evaluates the degradation efficiency of enrofloxacin (ENR) by catalytic wet air oxidation (CWAO) and ozonation. Results obtained by CWAO experiments show that 99.5% degradation, 37.0% chemical oxidation demand (COD) removal and 51.0% total organic carbon (TOC) conversion were obtained when 100 mol% FeCl3 and 25 mol% NaNO2 at 150 degrees C under 0.5 MPa oxygen pressure after 120 min are used. The degradation products are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC). The oxidation end products, F-, NO3- and NH4+ were determined by IC. The BOD5/COD ratio as a measure of the biodegradability of the parent compound increased from 0.01 to 0.12 after 120 min of reaction time, indicating an improved biodegradability of the parent compound. The inhibition of bioluminescence of the marine bacteria V. fischeri decreased from 43% to 12% demonstrating a loss in toxicity of ENR during CWAO. Ozonation of 0.2 mM ENR was carried out with an ozone concentration of 7.3 g m(-3) at pH 7. ENR decomposition with a degradation rate of 87% was obtained corresponding to the reaction time. Moderate changes in COD (18%) and TOC (17%) removal has been observed. The bioluminescence inhibition increased from 8% to 50%, due to the generation of toxic degradation products during ozonation. In comparison to the widely use of well developed method of ozonation CWAO exhibits better performance in terms of COD, TOC removals and generates less toxic products. (C) 2012 Elsevier Ltd. All rights reserved

    A scientific approach to wastewater recovery and reuse in the textile industry

    Get PDF
    Wastewater recovery and reuse in industries requires all the basic steps of quality management. It should involve a comprehensive in plant survey of processes with wastewater generation, identification of recoverable streams, and treatment requirements for reuse. It should equally undertake evaluation of wastewater quality remaining after segregation of the recovered portion, with specific emphasis on technological implications of appropriate treatment and compliance with effluent limitations. In this study, all these factors were experimentally assessed and evaluated for a knit fabric processing textile plant

    液质联用法研究活性黑5的水解产物

    No full text
    用高效液相色谱-质谱联用技术研究活性染料黑5及其水解产物的方法,考察了梯度洗脱对色谱分离及pH对其水解产物的影响;质谱辅助定性了其水解产物。结果表明:pH对活性黑5的水解过程影响非常显著;除了常规的水解产物,还检测到未知水解产物,推测可能在水解过程中还有其它的反应存在。活性染料黑5水解后的毒性升高,从染料及其水解产物的分子结构式来分析,这很可能和活性染料的活性基团变化有关

    离子色谱法测定活性染料臭氧化产物中的阴离子

    No full text
    建立了用离子色谱测定未经水解的活性红120(C.I. Reactive Red 120)染料臭氧化产物中的阴离子的方法。染料样品经OnGuard P型前处理柱过滤后可有效去除其中一些有机物(如偶氮化合物)。采用Dionex IonPac AS 11色谱柱分离,NaOH溶液梯度洗脱,电导或紫外吸收检测,可在18 min内完成染料臭氧降解后产物中的阴离子(SO_4~(2-),Cl~-,NO_3~-,HCOO_-和C_2O_4~(2-))的测定。5种阴离子的加标回收率在91.6% ~ 108。3%。结合染料溶液常规参数的测定结果,对臭氧降解活性红120染料的机理进行了初步的探讨

    Determinations of residual furazolidone and its metabolite, 3-amino-2-oxazolidinone (AOZ), in fish feeds by HPLC-UV and LC-MS/MS, respectively

    No full text
    The antibacterial drug furazolidone belonging to the group of nitrofuran antibacterial agents has been widely used as an antibacterial and antiprotozoal feed additive for poultry, cattle, and farmed fish in China. During application a large proportion of the administered drug may reach the environment directly or via feces. Although the use of furazolidone is prohibited in numerous countries, there are indications of its illegal use. It is known that furazolidone can be rapidly metabolized to 3-amino-2-oxazolidinone (AOZ) in the body of the target organism. In this study, a total of 21 fish feed samples, including 17 commercial fish feeds from local markets in China (representing 15 different formulations) and 4 fish feeds obtained from Germany and Turkey, respectively, are analyzed to determine whether the drug is still illegally used or commercially available feeds are contaminated by this drug. High-performance liquid chromatography (HPLC) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methods have been implemented to determine furazolidone and its metabolite AOZ in fish feeds containing animal protein, respectively. An efficient and convenient cleanup method for the determination of furazolidone in fish feeds is developed, and a simple cleanup method for the determination of AOZ is used. Method recoveries for samples used were determined as 87.7-98.3% for furazolidone at two spike levels of 2.0 and 5.0 ng g(-1) and as 95.6-102.8% for AOZ at spike levels of 0.4 and 0.8 ng g(-1). Limits of detections were 0.4 ng g(-1) for furazolidone and 0.05 ng g(-1) for AOZ. The established methods are therefore suitable for the determination of furazolidone and its metabolite AOZ in fish feeds at trace contamination levels. Using the established methods, all fish feed samples have been proved to be furazolidone negative; however, AOZ is tested in 16 of 17 fish feeds obtained from local markets in the Hubei province of China, with a positive rate as high as 94.1%.The antibacterial drug furazolidone belonging to the group of nitrofuran antibacterial agents has been widely used as an antibacterial and antiprotozoal feed additive for poultry, cattle, and farmed fish in China. During application a large proportion of the administered drug may reach the environment directly or via feces. Although the use of furazolidone is prohibited in numerous countries, there are indications of its illegal use. It is known that furazolidone can be rapidly metabolized to 3-amino-2-oxazolidinone (AOZ) in the body of the target organism. In this study, a total of 21 fish feed samples, including 17 commercial fish feeds from local markets in China (representing 15 different formulations) and 4 fish feeds obtained from Germany and Turkey, respectively, are analyzed to determine whether the drug is still illegally used or commercially available feeds are contaminated by this drug. High-performance liquid chromatography (HPLC) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methods have been implemented to determine furazolidone and its metabolite AOZ in fish feeds containing animal protein, respectively. An efficient and convenient cleanup method for the determination of furazolidone in fish feeds is developed, and a simple cleanup method for the determination of AOZ is used. Method recoveries for samples used were determined as 87.7-98.3% for furazolidone at two spike levels of 2.0 and 5.0 ng g(-1) and as 95.6-102.8% for AOZ at spike levels of 0.4 and 0.8 ng g(-1). Limits of detections were 0.4 ng g(-1) for furazolidone and 0.05 ng g(-1) for AOZ. The established methods are therefore suitable for the determination of furazolidone and its metabolite AOZ in fish feeds at trace contamination levels. Using the established methods, all fish feed samples have been proved to be furazolidone negative; however, AOZ is tested in 16 of 17 fish feeds obtained from local markets in the Hubei province of China, with a positive rate as high as 94.1%
    corecore