9 research outputs found

    On the Intricacies of Facial Hyperpigmentation and the Use of Herbal Ingredients as a Boon for Its Treatment: Cosmeceutical Significance, Current Challenges and Future Perspectives

    Get PDF
    Facial hyperpigmentation is the term used to express areas on irregular pigmentation in the skin. It appears as darkened patches on the face that make the facial skin look uneven. Facial hyperpigmentation is not physically debilitating but has been associated with enhanced psychosocial complications including anger, depression and frustration. These psychosocial burdens, in turn, have inference on quality of life and self-esteem. So, the treatment of facial hyperpigmentation seems to be a growing concern to the dermatologists today and they have been practising several treatment modalities including chemical peeling, laser therapy, dermabrasion, etc. But, those are found to be associated with various after-effects. Hence, the use of plants and its products is highly recommended as they are reported with either none or fewer after-effects. The present chapter draws attention to the forms of facial hyperpigmentation with their aetiologies and available treatment options for them with associated side effects. Furthermore, we have discussed about the other side of treatment with herbal ingredients which are safe and have less or no side effects. This chapter will be of value to the dermatologists who are searching for naturally derived ingredients for treating facial hyperpigmentation, in line with consumer expectations and preferences

    Enforcement of Environmental Laws and Regulations

    No full text

    Purification and Characterization of Melanogenic Enzyme Tyrosinase from Button Mushroom

    Get PDF
    Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme, tyrosinase, catalyzes the first and only rate-limiting steps in melanogenesis. Since the discovery of its melanogenic properties, tyrosinase has been in prime focus and microbial sources of the enzyme are sought. Agaricus bisporus widely known as the common edible mushroom, it’s taking place in high amounts of proteins, enzyme, carbohydrates, fibers, and low fat contents are frequently cited in the literature in relation to their nutritional value. In the present study tyrosinase from Agaricus bisporus was purified by ammonium sulphate precipitation, dialysis followed by gel filtration chromatography on Sephadex G-100, and ion exchange chromatography on DEAE-Cellulose; the enzyme was purified, 16.36-fold to give 26.6% yield on total activity in the crude extract and final specific activity of 52.19 U/mg. The SDS-PAGE electrophoresis showed a migrating protein band molecular weight of 95 kDa. The purified tyrosinase was optimized and the results revealed that the optimum values are pH 7.0 and temperature 35°C. The highest activity was reported towards its natural substrate, L-DOPA, with an apparent Km value of 0.933 mM. This indicated that tyrosinase purified from Agaricus bisporus is a potential source for medical applications

    Effects of ultraviolet-C radiation on isolated fish scale melanophores

    No full text
    58-60The effects of ultraviolet-C radiation on isolated fish scale melanophores are studied. The responses of melanophores were measured by mean melanophores size index (MMSI). At a temperature range of 27-29°C, the melanophores were exposed for varying durations ranging from one min to 60 min, to a direct source of ultraviolet-C radiation of wavelength 254 nm. It was found that the exposure of 30 min of UV-C radiation produced the highest effects on the melanophores of C. punctatus, where the MMSI reached a peak value of 8.351 ± 0.3798. The melanophores had become highly dispersed, with their cellular processes extending maximally

    Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry

    No full text
    Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented

    Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry

    No full text
    Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented
    corecore