3 research outputs found

    Critical quantum thermometry and its feasibility in spin systems

    Full text link
    In this work, we study temperature sensing with finite-sized strongly correlated systems exhibiting quantum phase transitions. We use the quantum Fisher information (QFI) approach to quantify the sensitivity in the temperature estimation, and apply a finite-size scaling framework to link this sensitivity to critical exponents of the system around critical points. We numerically calculate the QFI around the critical points for two experimentally-realizable systems: the spin-1 Bose-Einstein condensate and the spin-chain Heisenberg XX model in the presence of an external magnetic field. Our results confirm finite-size scaling properties of the QFI. Furthermore, we discuss experimentally-accessible observables that (nearly) saturate the QFI at the critical points for these two systems

    Cavity-enhanced polarization rotation measurements for low-disturbance probing of atoms

    Get PDF
    We propose and demonstrate cavity-enhanced polarization-rotation measurement as a means to detect magnetic effects in transparent media with greater sensitivity at equal optical disturbance to the medium. Using the Jones calculus, we compute the effective polarization rotation effect in a Fabry-Perot cavity containing a magnetic medium, including losses due to enclosure windows or other sources. The results show that when measuring polarization rotation, collecting the transmitted light has advantages in simplicity and linearity relative to collecting the reflected light. We demonstrate the technique by measuring Faraday rotation in a 87Rb atomic ensemble in the single-pass and cavity-enhanced geometries, and observe enhancement in good agreement with the theoretical predictions. We also demonstrate shot-noise-limited operation of the enhanced rotation scheme in the small-angle regime.Peer ReviewedPostprint (published version

    Seyranbağları Huzurevi

    No full text
    Ankara : İhsan Doğramacı Bilkent Üniversitesi İktisadi, İdari ve Sosyal Bilimler Fakültesi, Tarih Bölümü, 2013.This work is a student project of the The Department of History, Faculty of Economics, Administrative and Social Sciences, İhsan Doğramacı Bilkent University.by Müzeyyen Karabağ.Karabağ, Müzeyyen. HIST 200-2KARABAĞ HIST 200-2/4 2012-1
    corecore