547 research outputs found

    Direct measurement of the fine-structure interval in alkali atoms using diode lasers

    Get PDF
    We demonstrate a technique for directly measuring the fine-structure interval in alkali atoms using two frequency-stabilized diode lasers. Each laser has a linewidth of order 1 MHz and precise tunability: one laser is tuned to a hyperfine transition in the D_1 line, and the other laser to a hyperfine transition in the D_2 line. The outputs of the lasers are fed into a scanning Michelson interferometer that measures the ratio of their wavelengths accurately. To illustrate the technique, we measure the fine-structure interval in Rb, and obtain a value of 237.6000(3)(5) cm^-1 for the hyperfine-free 5P_{3/2} - 5P_{1/2} interval.Comment: 3 pages, 2 figures, to be published in Applied Physics Letters, 20 May 2002 editio

    High-accuracy wavemeter based on a stabilized diode laser

    Get PDF
    We have built a high-accuracy wavelength meter for tunable lasers using a scanning Michelson interferometer and a reference laser of known wavelength. The reference laser is a frequency stabilized diode laser locked to an atomic transition in Rb. The wavemeter has a statistical error per measurement of 5 parts in 10710^7 which can be reduced considerably by averaging. Using a second stabilized diode laser, we have verified that systematic errors are below 4 parts in 10810^8.Comment: 3 pages, 2 figure

    Holography of Gravitational Action Functionals

    Get PDF
    Einstein-Hilbert (EH) action can be separated into a bulk and a surface term, with a specific ("holographic") relationship between the two, so that either can be used to extract information about the other. The surface term can also be interpreted as the entropy of the horizon in a wide class of spacetimes. Since EH action is likely to just the first term in the derivative expansion of an effective theory, it is interesting to ask whether these features continue to hold for more general gravitational actions. We provide a comprehensive analysis of lagrangians of the form L=Q_a^{bcd}R^a_{bcd}, in which Q_a^{bcd} is a tensor with the symmetries of the curvature tensor, made from metric and curvature tensor and satisfies the condition \nabla_cQ^{abcd}=0, and show that they share these features. The Lanczos-Lovelock lagrangians are a subset of these in which Q^{abcd} is a homogeneous function of the curvature tensor. They are all holographic, in a specific sense of the term, and -- in all these cases -- the surface term can be interpreted as the horizon entropy. The thermodynamics route to gravity, in which the field equations are interpreted as TdS=dE+pdV, seems to have greater degree of validity than the field equations of Einstein gravity itself. The results suggest that the holographic feature of EH action could also serve as a new symmetry principle in constraining the semiclassical corrections to Einstein gravity. The implications are discussed.Comment: revtex 4; 17 pages; no figure

    Homogeneous Relaxation at Strong Coupling from Gravity

    Full text link
    Homogeneous relaxation is a ubiquitous phenomenon in semiclassical kinetic theories where the quasiparticles are distributed uniformly in space, and the equilibration involves only their velocity distribution. For such solutions, the hydrodynamic variables remain constant. We construct asymptotically AdS solutions of Einstein's gravity dual to such processes at strong coupling, perturbatively in the amplitude expansion, where the expansion parameter is the ratio of the amplitude of the non-hydrodynamic shear-stress tensor to the pressure. At each order, we sum over all time derivatives through exact recursion relations. We argue that the metric has a regular future horizon, order by order in the amplitude expansion, provided the shear-stress tensor follows an equation of motion. At the linear order, this equation of motion implies that the metric perturbations are composed of zero wavelength quasinormal modes. Our method allows us to calculate the non-linear corrections to this equation perturbatively in the amplitude expansion. We thus derive a special case of our previous conjecture on the regularity condition on the boundary stress tensor that endows the bulk metric with a regular future horizon, and also refine it further. We also propose a new outlook for heavy-ion phenomenology at RHIC and ALICE.Comment: 60 pages, a section titled "Outlook for RHIC and ALICE" has been added, accepted for publication in Physical Review

    Status of Zero Degree Calorimeter for CMS Experiment

    Get PDF
    The Zero Degree Calorimeter (ZDC) is integral part of the CMS experiment, especially, for heavy ion studies. The design of the ZDC includes two independent calorimeter sections: an electromagnetic section and a hadronic section. Sampling calorimeters using tungsten and quartz fibers have been chosen for the energy measurements. An overview of the ZDC is presented along with a current status of calorimeter's preparation for Day 1 of LHC.Comment: 8 pages, 5 figures, 1 table, to appear in the proceedings of CALOR06, June 5-9, 2006 Chicago, US

    Controlled transportation of mesoscopic particles by enhanced spin orbit interaction of light in an optical trap

    Full text link
    We study the effects of the spin orbit interaction (SOI) of light in an optical trap and show that the propagation of the tightly focused trapping beam in a stratified medium can lead to significantly enhanced SOI. For a plane polarized incident beam the SOI manifests itself by giving rise to a strong anisotropic linear diattenuation effect which produces polarization-dependent off-axis high intensity side lobes near the focal plane of the trap. Single micron-sized asymmetric particles can be trapped in the side lobes, and transported over circular paths by a rotation of the plane of input polarization. We demonstrate such controlled motion on single pea-pod shaped single soft oxometalate (SOM) particles of dimension around 1×0.5μ1\times 0.5\mum over lengths up to \sim15 μ\mum . The observed effects are supported by calculations of the intensity profiles based on a variation of the Debye-Wolf approach. The enhanced SOI could thus be used as a generic means of transporting mesoscopic asymmetric particles in an optical trap without the use of complex optical beams or changing the alignment of the beam into the trap.Comment: 9 pages, 7 figure

    Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary

    Get PDF
    The electrocaloric effect is calculated for PMN-PT relaxor ferroelectric thin film near morphotropic phase boundary composition. Thin film of thickness, ~240 nm, has been deposited using pulsed laser deposition technique on a highly (111) oriented platinized silicon substrate at 700°C and at 100 mtorr oxygen partial pressure. Prior to the deposition of PMN-PT, a template layer of LSCO of thickness, ~60 nm, is deposited on the platinized silicon substrate to hinder the pyrochlore phase formation. The temperature dependent P-E loops were measured at 200 Hz triangular wave operating at the virtual ground mode. Maximum reversible adiabatic temperature change, ΔT = 31 K, was calculated at 140°C for an external applied voltage of 18 V

    Spatially Resolved Patchy Lyman-α\alpha Emission Within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Get PDF
    We report the detection of extended Lyman-α\alpha emission from the host galaxy of SDSS~J2222+2745, a strongly lensed quasar at z=2.8z = 2.8. Spectroscopic follow-up clearly reveals extended Lyman-α\alpha in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging, and resolve spatial scales as small as \sim200 parsecs. In the source plane we recover the host galaxy morphology to within a few hundred parsecs of the central AGN, and map the extended Lyman-α\alpha emission to its physical origin on one side of the host galaxy at radii \sim0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyman-α\alpha and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyman-α\alpha, host galaxy Lyman-α\alpha, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.Comment: Accepted to ApJ Letters; 7 pages, 5 figure
    corecore