174 research outputs found
Null-Space Minimization of Center of Gravity Displacementof a Redundant Aerial Manipulator
Displacements of the base during trajectory tracking are a common issue in the control of aerial manipulators. These are caused by reaction torques transferred to the base due to the manipulator motion and, in particular, to the motion of its center of gravity. We present a novel approach to reduce base displacements of a kinematically redundant aerial manipulator by using null-space projection in the inverse kinematic control. A secondary objective function minimizes the horizontal displacement of the manipulator center of gravity. We test this algorithm on different trajectories for both three and four degrees of freedom (DOF) manipulators in a simulation environment. The results comparing our algorithm with inverse kinematic control without the null-space projection show up to an 80% reduction in the end-effector position error and an average of about 56% reduction in maximum base displacement. The simulation implementation also runs faster than in real-time in our code implementation. We provide a workspace analysis based on multiple stopping criteria such as excessive base displacement, joint velocities and end-effector position error for the 3 and 4 DOF manipulators. As expected, the 4 DOF manipulator has a larger workspace
A Remark on the Renormalization Group Equation for the Penner Model
It is possible to extract values for critical couplings and gamma_string in
matrix models by deriving a renormalization group equation for the variation of
the of the free energy as the size N of the matrices in the theory is varied.
In this paper we derive a ``renormalization group equation'' for the Penner
model by direct differentiation of the partition function and show that it
reproduces the correct values of the critical coupling and gamma_string and is
consistent with the logarithmic corrections present for g=0,1.Comment: LaTeX, 5 pages, LPTHE-Orsay-94-5
Dynamical SU(3) linear sigma model and the mixing of eta'-eta and sigma-f_0 mesons
The SU(3) linear sigma model is dynamically generated in loop-order using the
nonstrange-strange basis. Only self-consistent logarithmic divergent graphs are
needed, with quadratic divergent graphs replaced by SU(3) mass-shell equal
splitting laws. The latter lead to an eta'-eta mixing angle of 41.84 deg which
is consistent with phenomenology. Finally this above SU(3) linear sigma model
in turn predicts strong decay rates which are all compatible with data.Comment: 14 pages, 1 figure, elsart; version to appear in J. Phys. G, appendix
added, some typos correcte
Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC
We present TeV gamma-ray observations of the Crab Nebula, the standard
reference source in ground-based gamma-ray astronomy, using data from the High
Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. In this analysis we use
two independent energy-estimation methods that utilize extensive air shower
variables such as the core position, shower angle, and shower lateral energy
distribution. In contrast, the previously published HAWC energy spectrum
roughly estimated the shower energy with only the number of photomultipliers
triggered. This new methodology yields a much improved energy resolution over
the previous analysis and extends HAWC's ability to accurately measure
gamma-ray energies well beyond 100 TeV. The energy spectrum of the Crab Nebula
is well fit to a log parabola shape with emission up to at least 100 TeV. For the first
estimator, a ground parameter that utilizes fits to the lateral distribution
function to measure the charge density 40 meters from the shower axis, the
best-fit values are
=(2.350.04)10 (TeV cm
s), =2.790.02, and
=0.100.01. For the second estimator, a neural
network which uses the charge distribution in annuli around the core and other
variables, these values are
=(2.310.02)10 (TeV cm
s), =2.730.02, and
=0.060.010.02. The first set of uncertainties are statistical;
the second set are systematic. Both methods yield compatible results. These
measurements are the highest-energy observation of a gamma-ray source to date.Comment: published in Ap
All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV
We report on the measurement of the all-particle cosmic ray energy spectrum
with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range
10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes
of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to
gamma rays and cosmic rays at TeV energies. The data used in this work were
taken from 234 days between June 2016 to February 2017. The primary cosmic-ray
energy is determined with a maximum likelihood approach using the particle
density as a function of distance to the shower core. Introducing quality cuts
to isolate events with shower cores landing on the array, the reconstructed
energy distribution is unfolded iteratively. The measured all-particle spectrum
is consistent with a broken power law with an index of prior to
a break at ) TeV, followed by an index of . The
spectrum also respresents a single measurement that spans the energy range
between direct detection and ground based experiments. As a verification of the
detector response, the energy scale and angular resolution are validated by
observation of the cosmic ray Moon shadow's dependence on energy.Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review
Constraining the Ratio in TeV Cosmic Rays with Observations of the Moon Shadow by HAWC
An indirect measurement of the antiproton flux in cosmic rays is possible as
the particles undergo deflection by the geomagnetic field. This effect can be
measured by studying the deficit in the flux, or shadow, created by the Moon as
it absorbs cosmic rays that are headed towards the Earth. The shadow is
displaced from the actual position of the Moon due to geomagnetic deflection,
which is a function of the energy and charge of the cosmic rays. The
displacement provides a natural tool for momentum/charge discrimination that
can be used to study the composition of cosmic rays. Using 33 months of data
comprising more than 80 billion cosmic rays measured by the High Altitude Water
Cherenkov (HAWC) observatory, we have analyzed the Moon shadow to search for
TeV antiprotons in cosmic rays. We present our first upper limits on the
fraction, which in the absence of any direct measurements, provide
the tightest available constraints of on the antiproton fraction for
energies between 1 and 10 TeV.Comment: 10 pages, 5 figures. Accepted by Physical Review
The Sensitivity of HAWC to High-Mass Dark Matter Annihilations
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view
detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in
central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC
will observe gamma rays and cosmic rays with an array of water Cherenkov
detectors. The full HAWC array is scheduled to be operational in Spring 2015.
In this paper, we study the HAWC sensitivity to the gamma-ray signatures of
high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be
sensitive to diverse searches for dark matter annihilation, including
annihilation from extended dark matter sources, the diffuse gamma-ray emission
from dark matter annihilation, and gamma-ray emission from non-luminous dark
matter subhalos. Here we consider the HAWC sensitivity to a subset of these
sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the
Galactic center. We simulate the HAWC response to gamma rays from these sources
in several well-motivated dark matter annihilation channels. If no gamma-ray
excess is observed, we show the limits HAWC can place on the dark matter
cross-section from these sources. In particular, in the case of dark matter
annihilation into gauge bosons, HAWC will be able to detect a narrow range of
dark matter masses to cross-sections below thermal. HAWC should also be
sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The
constraints placed by HAWC on the dark matter cross-section from known sources
should be competitive with current limits in the mass range where HAWC has
similar sensitivity. HAWC can additionally explore higher dark matter masses
than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR
- …