16 research outputs found

    CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice

    Get PDF
    Oji, A., Noda, T., Fujihara, Y. et al. CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice. Sci Rep 6, 31666 (2016). https://doi.org/10.1038/srep3166

    Characterization of the Modes of Binding between Human Sweet Taste Receptor and Low-Molecular-Weight Sweet Compounds

    Get PDF
    One of the most distinctive features of human sweet taste perception is its broad tuning to chemically diverse compounds ranging from low-molecular-weight sweeteners to sweet-tasting proteins. Many reports suggest that the human sweet taste receptor (hT1R2–hT1R3), a heteromeric complex composed of T1R2 and T1R3 subunits belonging to the class C G protein–coupled receptor family, has multiple binding sites for these sweeteners. However, it remains unclear how the same receptor recognizes such diverse structures. Here we aim to characterize the modes of binding between hT1R2–hT1R3 and low-molecular-weight sweet compounds by functional analysis of a series of site-directed mutants and by molecular modeling–based docking simulation at the binding pocket formed on the large extracellular amino-terminal domain (ATD) of hT1R2. We successfully determined the amino acid residues responsible for binding to sweeteners in the cleft of hT1R2 ATD. Our results suggest that individual ligands have sets of specific residues for binding in correspondence with the chemical structures and other residues responsible for interacting with multiple ligands

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Photochemical migration of liquid column in a glass tube

    No full text
    A light-induced migration of liquid columns in a 2.5-mm glass capillary by photochemical isomerization was demonstrated. The isomerization of a surfactant AZTMA, which was added into ultrapure water, occurred by irradiating UV or visible light and results in the surface tension of the liquid. By utilizing this effect, the column manipulation was performed by irradiating the UV light to a half portion of the liquid column so that liquid-gas interface at two column ends had different surface tension dye to the photochemical isomerization. As a result, the migration of the columns generated by a difference in the Laplace pressure at two ends was observed. The columns firstly advanced at constant speeds depending on their lengths and then decelerated by mixing of isomers in the columns. Moreover, it was found that shorter the column length, higher the mobility. This characteristic was explained by the viscous friction, which counteracted the driving force, and the Marangoni convection in the vicinity of the interface

    Structural Characterization of the Ribosome Maturation Protein, RimM▿

    No full text
    The RimM protein has been implicated in the maturation of the 30S ribosomal subunit. It binds to ribosomal protein S19, located in the head domain of the 30S subunit. Multiple sequence alignments predicted that RimM possesses two domains in its N- and C-terminal regions. In the present study, we have produced Thermus thermophilus RimM in both the full-length form (162 residues) and its N-terminal fragment, spanning residues 1 to 85, as soluble proteins in Escherichia coli and have performed structural analyses by nuclear magnetic resonance spectroscopy. Residues 1 to 80 of the RimM protein fold into a single structural domain adopting a six-stranded β-barrel fold. On the other hand, the C-terminal region of RimM (residues 81 to 162) is partly folded in solution. Analyses of 1H-15N heteronuclear single quantum correlation spectra revealed that a wide range of residues in the C-terminal region, as well as the residues in the vicinity of a hydrophobic patch in the N-terminal domain, were dramatically affected upon complex formation with ribosomal protein S19

    The Trihelix Transcription Factor GTL1 Regulates Ploidy-Dependent Cell Growth in the Arabidopsis Trichome[W][OA]

    No full text
    Leaf trichomes in Arabidopsis thaliana develop through several distinct cellular processes, such as patterning, differentiation, and growth. Although recent studies have identified several key transcription factors as regulating early patterning and differentiation steps, it is still largely unknown how these regulatory proteins mediate subsequent trichome development, which is accompanied by rapid cell growth and branching. Here, we report a novel trichome mutation in Arabidopsis, which in contrast with previously identified mutants, increases trichome cell size without altering its overall patterning or branching. We show that the corresponding gene encodes a GT-2-LIKE1 (GTL1) protein, a member of the trihelix transcription factor family. GTL1 is present within the nucleus during the postbranching stages of trichome development, and its loss of function leads to an increase in the nuclear DNA content only in trichomes that have completed branching. Our data further demonstrate that the gtl1 mutation modifies the expression of several cell cycle genes and partially rescues the ploidy defects in the cyclin-dependent kinase inhibitor mutant siamese. Taken together, this study provides the genetic evidence for the requirement of transcriptional regulation in the repression of ploidy-dependent plant cell growth as well as for an involvement of GTL trihelix proteins in this regulation
    corecore