2 research outputs found

    Estrogenic Mechanisms and Cardiac Responses Following Early Life Exposure to Bisphenol A (BPA) and Its Metabolite 4‑Methyl-2,4-bis(<i>p</i>‑hydroxyphenyl)pent-1-ene (MBP) in Zebrafish

    No full text
    Environmental exposure to Bisphenol A (BPA) has been associated with a range of adverse health effects, including on the cardiovascular system in humans. Lack of agreement on its mechanism(s) of action likely stem from comparisons between in vivo and in vitro test systems and potential multiple effects pathways. In rodents, in vivo, metabolic activation of BPA produces 4-methyl-2,4-bis­(4-hydroxyphenyl)­pent-1-ene (MBP), which is reported to be up to 1000 times more potent as an estrogen than BPA. We investigated the estrogenic effects and estrogen receptor signaling pathway(s) of BPA and MBP following early life exposure using a transgenic, estrogen responsive (ERE-TG) zebrafish and a targeted morpholino approach to knockdown the three fish estrogen receptor (ER) subtypes. The functional consequences of BPA exposure on the cardiovascular system of zebrafish larvae were also examined. The heart atrioventricular valves and the <i>bulbus arteriosus</i> were primary target tissues for both BPA and MBP in the ERE-TG zebrafish, and MBP was approximately 1000-fold more potent than BPA as an estrogen in these tissues. Estrogen receptor knockdown with morpholinos indicated that the estrogenic responses in the heart for both BPA and MBP were mediated via an estrogen receptor 1 (esr1) dependent pathway. At the highest BPA concentration tested (2500 μg/L), alterations in the atrial:ventricular beat ratio indicated a functional impact on the heart of 5 days post fertilization (dpf) larvae, and there was also a significantly reduced heart rate in these larvae at 14 dpf. Our findings indicate that some of the reported adverse effects on heart function associated with BPA exposure (in mammals) may act through an estrogenic mechanism, but that fish are unlikely to be susceptible to adverse effects on heart development for environmentally relevant exposures

    High-Content and Semi-Automated Quantification of Responses to Estrogenic Chemicals Using a Novel Translucent Transgenic Zebrafish

    No full text
    Rapid embryogenesis, together with genetic similarities with mammals, and the desire to reduce mammalian testing, are major incentives for using the zebrafish model in chemical screening and testing. Transgenic zebrafish, engineered for identifying target gene expression through expression of fluorophores, have considerable potential for both high-content and high-throughput testing of chemicals for endocrine activity. Here we generated an estrogen responsive transgenic zebrafish model in a pigment-free “Casper” phenotype, facilitating identification of target tissues and quantification of these responses in whole intact fish. Using the ERE-GFP-Casper model we show chemical type and concentration dependence for green fluorescent protein (GFP) induction and both spatial and temporal responses for different environmental estrogens tested. We also developed a semiautomated (ArrayScan) imaging and image analysis system that we applied to quantify whole body fluorescence responses for a range of different estrogenic chemicals in the new transgenic zebrafish model. The zebrafish model developed provides a sensitive and highly integrative system for identifying estrogenic chemicals, their target tissues and effect concentrations for exposures in real time and across different life stages. It thus has application for chemical screening to better direct health effects analysis of environmental estrogens and for investigating the functional roles of estrogens in vertebrates
    corecore