50 research outputs found

    黄色ブドウ球菌における自然形質転換

    Get PDF
    筑波大学 (University of Tsukuba)201

    Sodium Polyanethol Sulfonate Modulates Natural Transformation of SigH-Expressing Staphylococcus aureus

    Get PDF
    Expression of genes required for natural genetic competence in Staphylococcus aureus is controlled by an alternative transcription sigma factor, SigH. However, even in the SigH-expressing cells, the DNA transformation efficiency varies depending on culture conditions. We report here that cells grown in the competence-inducing medium (CS2 medium) exhibit enlarged morphology with disintegrated cell walls. Notably, an autolysis inhibitor, Sodium Polyanethol Sulfonate (SPS), facilitated transformation in CS2 medium in a dose-dependent manner, suggesting the involvement of the cell wall metabolism in transformation. However, the transformation efficiency of cells grown in TSB was not improved by physical or enzymatic damage on the cell walls

    Neural activity in the dorsal medial superior temporal area of monkeys represents retinal error during adaptive motor learning

    Get PDF
    To adapt to variable environments, humans regulate their behavior by modulating gains in sensory-to-motor processing. In this study, we measured a simple eye movement, the ocular following response (OFR), in monkeys to study the neuronal basis of adaptive motor learning in the visuomotor processing stream. The medial superior temporal (MST) area of the cerebral cortex is a critical site for contextual gain modulation of the OFR. However, the role of MST neurons in adaptive gain modulation of the OFR remains unknown. We adopted a velocity step-down sequence paradigm that was designed to promote adaptive gain modulation of the OFR to investigate the role of the dorsal MST (MSTd) in adaptive motor learning. In the initial learning stage, we observed a reduction in the OFR but no significant change in the “open-loop” responses for the majority of the MSTd neurons. However, in the late learning stage, some MSTd neurons exhibited significantly enhanced “closed-loop” responses in association with increases in retinal error velocity. These results indicate that the MSTd area primarily encodes visual motion, suggesting that MSTd neurons function upstream of the motor learning site to provide sensory signals to the downstream structures involved in adaptive motor learning
    corecore