3,703 research outputs found

    Prisoner's Dilemma cellular automata revisited: evolution of cooperation under environmental pressure

    Full text link
    We propose an extension of the evolutionary Prisoner's Dilemma cellular automata, introduced by Nowak and May \cite{nm92}, in which the pressure of the environment is taken into account. This is implemented by requiring that individuals need to collect a minimum score UminU_{min}, representing indispensable resources (nutrients, energy, money, etc.) to prosper in this environment. So the agents, instead of evolving just by adopting the behaviour of the most successful neighbour (who got UmsnU^{msn}), also take into account if UmsnU^{msn} is above or below the threshold UminU_{min}. If Umsn<UminU^{msn}<U_{min} an individual has a probability of adopting the opposite behaviour from the one used by its most successful neighbour. This modification allows the evolution of cooperation for payoffs for which defection was the rule (as it happens, for example, when the sucker's payoff is much worse than the punishment for mutual defection). We also analyse a more sophisticated version of this model in which the selective rule is supplemented with a "win-stay, lose-shift" criterion. The cluster structure is analyzed and, for this more complex version we found power-law scaling for a restricted region in the parameter space.Comment: 15 pages, 8 figures; added figures and revised tex

    Strategy bifurcation and spatial inhomogeneity in a simple model of competing sellers

    Get PDF
    We present a simple one-parameter model for spatially localised evolving agents competing for spatially localised resources. The model considers selling agents able to evolve their pricing strategy in competition for a fixed market. Despite its simplicity, the model displays extraordinarily rich behavior. In addition to ``cheap'' sellers pricing to cover their costs, ``expensive'' sellers spontaneously appear to exploit short-term favorable situations. These expensive sellers ``speciate'' into discrete price bands. As well as variety in pricing strategy, the ``cheap'' sellers evolve a strongly correlated spatial structure, which in turn creates niches for their expensive competitors. Thus an entire ecosystem of coexisting, discrete, symmetry-breaking strategies arises.Comment: 6 pages, 6 figures, epl2; 1 new figure, include nash equilibrium analysis, typo fixe

    Invariants from classical field theory

    Full text link
    We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. Applying our methods to several field theories such as abelian BF, Chern-Simons and 2-dimensional Yang-Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss' and the second Milnor's invariant for links in S^3, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.Comment: 20 pages, 1 figure, to appear in J. Math. Phy

    Adaptation and enslavement in endosymbiont-host associations

    Full text link
    The evolutionary persistence of symbiotic associations is a puzzle. Adaptation should eliminate cooperative traits if it is possible to enjoy the advantages of cooperation without reciprocating - a facet of cooperation known in game theory as the Prisoner's Dilemma. Despite this barrier, symbioses are widespread, and may have been necessary for the evolution of complex life. The discovery of strategies such as tit-for-tat has been presented as a general solution to the problem of cooperation. However, this only holds for within-species cooperation, where a single strategy will come to dominate the population. In a symbiotic association each species may have a different strategy, and the theoretical analysis of the single species problem is no guide to the outcome. We present basic analysis of two-species cooperation and show that a species with a fast adaptation rate is enslaved by a slowly evolving one. Paradoxically, the rapidly evolving species becomes highly cooperative, whereas the slowly evolving one gives little in return. This helps understand the occurrence of endosymbioses where the host benefits, but the symbionts appear to gain little from the association.Comment: v2: Correction made to equations 5 & 6 v3: Revised version accepted in Phys. Rev. E; New figure adde

    Hawks and Doves on Small-World Networks

    Get PDF
    We explore the Hawk-Dove game on networks with topologies ranging from regular lattices to random graphs with small-world networks in between. This is done by means of computer simulations using several update rules for the population evolutionary dynamics. We find the overall result that cooperation is sometimes inhibited and sometimes enhanced in those network structures, with respect to the mixing population case. The differences are due to different update rules and depend on the gain-to-cost ratio. We analyse and qualitatively explain this behavior by using local topological arguments.Comment: 12 pages, 8 figure

    Robustness of Cooperation in the Evolutionary Prisoner's Dilemma on Complex Networks

    Full text link
    Recent studies on the evolutionary dynamics of the Prisoner's Dilemma game in scale-free networks have demonstrated that the heterogeneity of the network interconnections enhances the evolutionary success of cooperation. In this paper we address the issue of how the characterization of the asymptotic states of the evolutionary dynamics depends on the initial concentration of cooperators. We find that the measure and the connectedness properties of the set of nodes where cooperation reaches fixation is largely independent of initial conditions, in contrast with the behavior of both the set of nodes where defection is fixed, and the fluctuating nodes. We also check for the robustness of these results when varying the degree heterogeneity along a one-parametric family of networks interpolating between the class of Erdos-Renyi graphs and the Barabasi-Albert networks.Comment: 18 pages, 6 figures, revised version accepted for publication in New Journal of Physics (2007

    Ordering in spatial evolutionary games for pairwise collective strategy updates

    Full text link
    Evolutionary 2×22 \times 2 games are studied with players located on a square lattice. During the evolution the randomly chosen neighboring players try to maximize their collective income by adopting a random strategy pair with a probability dependent on the difference of their summed payoffs between the final and initial state assuming quenched strategies in their neighborhood. In the case of the anti-coordination game this system behaves alike an anti-ferromagnetic kinetic Ising model. Within a wide region of social dilemmas this dynamical rule supports the formation of similar spatial arrangement of the cooperators and defectors ensuring the optimum total payoff if the temptation to choose defection exceeds a threshold value dependent on the sucker's payoff. The comparison of the results with those achieved for pairwise imitation and myopic strategy updates has indicated the relevant advantage of pairwise collective strategy update in the maintenance of cooperation.Comment: 9 pages, 6 figures; accepted for publication in Physical Review

    Evolutionary Prisoner's Dilemma on heterogeneous Newman-Watts small-world network

    Full text link
    We focus on the heterogeneity of social networks and its role to the emergence of prevailing cooperation and sustaining cooperators. The social networks are representative of the interaction relationships between players and their encounters in each round of games. We study an evolutionary Prisoner's Dilemma game on a variant of Watts-Strogatz small-world network, whose heterogeneity can be tuned by a parameter. It is found that optimal cooperation level exists at some intermediate topological heterogeneity for different temptations to defect. Moreover, neither the most heterogeneous case nor the most homogeneous one would favor the cooperators. At intermediate heterogeneity in degree sequences, cooperators could resist the invasion of defectors for large temptation to defect.Comment: Updated versio

    Hereditary sensory and autonomic neuropathies: types II, III, and IV

    Get PDF
    The hereditary sensory and autonomic neuropathies (HSAN) encompass a number of inherited disorders that are associated with sensory dysfunction (depressed reflexes, altered pain and temperature perception) and varying degrees of autonomic dysfunction (gastroesophageal reflux, postural hypotention, excessive sweating). Subsequent to the numerical classification of four distinct forms of HSAN that was proposed by Dyck and Ohta, additional entities continue to be described, so that identification and classification are ongoing. As a group, the HSAN are rare diseases that affect both sexes. HSAN III is almost exclusive to individuals of Eastern European Jewish extraction, with incidence of 1 per 3600 live births. Several hundred cases with HSAN IV have been reported. The worldwide prevalence of HSAN type II is very low. This review focuses on the description of three of the disorders, HSAN II through IV, that are characterized by autosomal recessive inheritance and onset at birth. These three forms of HSAN have been the most intensively studied, especially familial dysautonomia (Riley-Day syndrome or HSAN III), which is often used as a prototype for comparison to the other HSAN. Each HSAN disorder is likely caused by different genetic errors that affect specific aspects of small fiber neurodevelopment, which result in variable phenotypic expression. As genetic tests are routinely used for diagnostic confirmation of HSAN III only, other means of differentiating between the disorders is necessary. Diagnosis is based on the clinical features, the degree of both sensory and autonomic dysfunction, and biochemical evaluations, with pathologic examinations serving to further confirm differences. Treatments for all these disorders are supportive
    corecore