20 research outputs found
Climate, people and faunal succession on Java, Indonesia: evidence from Song Gupuh
Song Gupuh, a partially collapsed cave in the Gunung Sewu Limestones of East Java, Indonesia, contains over 16 m of deposits with a faunal sequence spanning some 70 ka. Major changes in the range of animals represented show the impact of climate change and humans. The Terminal Pleistocene and Early Holocene was a period of maximum biodiversity. Human use of Song Gupuh and other cave sites in the region also intensified significantly from ca. 12 ka, together with a new focus on exploitation of small-bodied species (macaque monkeys and molluscs), the first evidence for import of resources from the coast, and use of bone and shell tools. Human activity, especially after the onset of the Neolithic around 2.6 ka, subsequently contributed to a progressive loss of many species from the area, including tapir, elephant, Malayan bear, rhino and tiger, and this extinction process is continuing. We conclude by discussing the biogeographical significance of Song Gupuh in the context of other sites in Java (e.g. Punung, Wajak) and further afield (e.g. Liang Bua)
An integrative geochronological framework for the pleistocene So'a basin (Flores, Indonesia), and its implications for faunal turnover and hominin arrival
Flores represents a unique insular environment with an extensive record of Pleistocene fossil remains and stone artefacts. In the So\u27a Basin of central Flores these include endemic Stegodon, Komodo dragons, giant tortoises, rats, birds and hominins, and lithic artefacts that can be traced back to at least one million years ago (1 Ma). This comprehensive review presents important new data regarding the dating and faunal sequence of the So\u27a Basin, including the site of Mata Menge where Homo floresiensis-like fossils dating to approximately 0.7 Ma were discovered in 2014. By chemical fingerprinting key silicic tephra originating from local and distal eruptive sources we have now established basin-wide tephrostratigraphic correlations, and, together with new numerical ages, present an update of the chronostratigraphy of the So\u27a Basin, with major implications for the faunal sequence. These results show that a giant tortoise and the diminutive proboscidean Stegodon sondaari last occurred at the site of Tangi Talo ∼1.3 Ma, and not 0.9 Ma as previously thought. We also present new data suggesting that the disappearance of giant tortoise and S. sondaari from the sedimentary record occurred before, and/or was coincident with, the earliest hominin arrival, as evidenced by the first records of lithic artefacts occurring directly below the 1 Ma Wolo Sege Tephra. Artefacts become common in the younger layers, associated with a distinct fauna characterized by the medium-sized Stegodon florensis and giant rat Hooijeromys nusatenggara. Furthermore, we describe a newly discovered terrace fill, which extends the faunal record of Stegodon in the So\u27a Basin to the Late Pleistocene. Our evidence also suggests that the paleoenvironment of the So\u27a Basin became drier around the time of the observed faunal transition and arrival of hominins on the island, which could be related to an astronomically-forced climate response at the onset of the Mid-Pleistocene Transition (MPT; ∼1.25 Ma) leading to increased aridity and monsoonal intensity
A New small-bodied hominin from the Late Pleistocene of Flores, Indonesia
Currently, it is widely accepted that only one hominin genus, Homo, was present in Pleistocene Asia, represented by two species, Homo erectus and Homo sapiens. Both species are characterized by greater brain size, increased body height and smaller teeth relative to Pliocene Australopithecus in Africa. Here we report the discovery, from the Late Pleistocene of Flores, Indonesia, of an adult hominin with stature and endocranial volume approximating 1 m and 380 cm³, respectively—equal to the smallest-known australopithecines. The combination of primitive and derived features assigns this hominin to a new species, Homo floresiensis. The most likely explanation for its existence on Flores is long-term isolation, with subsequent endemic dwarfing, of an ancestral H. erectus population. Importantly, H. floresiensis shows that the genus Homo is morphologically more varied and flexible in its adaptive responses than previously thought
The foot of 'Homo floresiensis'
'Homo floresiensis' is an endemic hominin species that occupied Liang Bua, a limestone cave on Flores in eastern Indonesia, during the Late Pleistocene epoch. The skeleton of the type specimen (LB1) of 'H. floresiensis' includes a relatively complete left foot and parts of the right foot. These feet provide insights into the evolution of bipedalism and, together with the rest of the skeleton, have implications for hominin dispersal events into Asia. Here we show that LB1's foot is exceptionally long relative to the femur and tibia, proportions never before documented in hominins but seen in some African apes. Although the metatarsal robusticity sequence is human-like and the hallux is fully adducted, other intrinsic proportions and pedal features are more ape-like. The postcranial anatomy of 'H. floresiensis' is that of a biped, but the unique lower-limb proportions and surprising combination of derived and primitive pedal morphologies suggest kinematic and biomechanical differences from modern human gait. Therefore, LB1 offers the most complete glimpse of a bipedal hominin foot that lacks the full suite of derived features characteristic of modern humans and whose mosaic design may be primitive for the genus 'Homo'. These new findings raise the possibility that the ancestor of 'H. floresiensi's was not 'Homo erectus' but instead some other, more primitive, hominin whose dispersal into southeast Asia is still undocumented
Climate, people and faunal succession on Java, Indonesia: evidence from Song Gupuh
Song Gupuh, a partially collapsed cave in the Gunung Sewu Limestones of East Java, Indonesia, contains over 16 m of deposits with a faunal sequence spanning some 70 ka. Major changes in the range of animals represented show the impact of climate change and humans. The Terminal Pleistocene and Early Holocene was a period of maximum biodiversity. Human use of Song Gupuh and other cave sites in the region also intensified significantly from ca. 12 ka, together with a new focus on exploitation of small-bodied species (macaque monkeys and molluscs), the first evidence for import of resources from the coast, and use of bone and shell tools. Human activity, especially after the onset of the Neolithic around 2.6 ka, subsequently contributed to a progressive loss of many species from the area, including tapir, elephant, Malayan bear, rhino and tiger, and this extinction process is continuing. We conclude by discussing the biogeographical significance of Song Gupuh in the context of other sites in Java (e.g. Punung, Wajak) and further afield (e.g. Liang Bua)
Revised stratigraphy and chronology for Homo floresiensis at Liang Bua in Indonesia
Homo floresiensis, a primitive hominin species discovered in Late Pleistocene sediments at Liang Bua (Flores, Indonesia)1, 2, 3, has generated wide interest and scientific debate. A major reason this taxon is controversial is because the H. floresiensis-bearing deposits, which include associated stone artefacts2, 3, 4 and remains of other extinct endemic fauna5, 6, were dated to between about 95 and 12 thousand calendar years (kyr) ago2, 3, 7. These ages suggested that H. floresiensis survived until long after modern humans reached Australia by ~50 kyr ago8, 9, 10. Here we report new stratigraphic and chronological evidence from Liang Bua that does not support the ages inferred previously for the H. floresiensis holotype (LB1), ~18 thousand calibrated radiocarbon years before present (kyr cal. bp), or the time of last appearance of this species (about 17 or 13-11 kyr cal. bp)1, 2, 3, 7, 11. Instead, the skeletal remains of H. floresiensis and the deposits containing them are dated to between about 100 and 60 kyr ago, whereas stone artefacts attributable to this species range from about 190 to 50 kyr in age. Whether H. floresiensis survived after 50 kyr ago-potentially encountering modern humans on Flores or other hominins dispersing through southeast Asia, such as Denisovans12, 13-is an open question
An early modern human presence in Sumatra 73,000-63,000 years ago
Genetic evidence for anatomically modern humans (AMH) out of Africa before 75 thousand years ago (ka)1 and in island southeast Asia (ISEA) before 60 ka (93-61 ka)2 predates accepted archaeological records of occupation in the region3. Claims that AMH arrived in ISEA before 60 ka (ref. 4) have been supported only by equivocal5 or non-skeletal evidence6. AMH evidence from this period is rare and lacks robust chronologies owing to a lack of direct dating applications7, poor preservation and/or excavation strategies8 and questionable taxonomic identifications9. Lida Ajer is a Sumatran Pleistocene cave with a rich rainforest fauna associated with fossil human teeth7, 10. The importance of the site is unclear owing to unsupported taxonomic identification of these fossils and uncertainties regarding the age of the deposit, therefore it is rarely considered in models of human dispersal. Here we reinvestigate Lida Ajer to identify the teeth confidently and establish a robust chronology using an integrated dating approach. Using enamel-dentine junction morphology, enamel thickness and comparative morphology, we show that the teeth are unequivocally AMH. Luminescence and uranium-series techniques applied to bone-bearing sediments and speleothems, and coupled uranium-series and electron spin resonance dating of mammalian teeth, place modern humans in Sumatra between 73 and 63 ka. This age is consistent with biostratigraphic estimations7, palaeoclimate and sea-level reconstructions, and genetic evidence for a pre-60 ka arrival of AMH into ISEA2. Lida Ajer represents, to our knowledge, the earliest evidence of rainforest occupation by AMH, and underscores the importance of reassessing the timing and environmental context of the dispersal of modern humans out of Africa
Archaeology and age of a new hominin from Flores in eastern Indonesia
Excavations at Liang Bua, a large limestone cave on the island of Flores in eastern Indonesia, have yielded evidence for a population of tiny hominins, sufficiently distinct anatomically to be assigned to a new species, Homo floresiensis1. The finds comprise the cranial and some post-cranial remains of one individual, as well as a premolar from another individual in older deposits. Here we describe their context, implications and the remaining archaeological uncertainties. Dating by radiocarbon (14C), luminescence, uranium-series and electron spin resonance (ESR) methods indicates that H. floresiensis existed from before 38,000 years ago (kyr) until at least 18 kyr. Associated deposits contain stone artefacts and animal remains, including Komodo dragon and an endemic, dwarfed species of Stegodon. H. floresiensis originated from an early dispersal of Homo erectus (including specimens referred to as Homo ergaster and Homo georgicus)1 that reached Flores, and then survived on this island refuge until relatively recently. It overlapped significantly in time with Homo sapiens in the region2,3, but we do not know if or how the two species interacted.5 page(s
Archaeology and age of a new hominin from Flores, in eastern Indonesia
Excavations at Liang Bua, a large limestone cave on the island of Flores in eastern Indonesia, have yielded evidence for a population of tiny hominins, sufficiently distinct anatomically to be assigned to a new species, Homo floresiensis1. The finds comprise the cranial and some post-cranial remains of one individual, as well as a premolar from another individual in older deposits. Here we describe their context, implications and the remaining archaeological uncertainties. Dating by radiocarbon (14C), luminescence, uranium-series and electron spin resonance (ESR) methods indicates that H. floresiensis existed from before 38,000 years ago (kyr) until at least 18 kyr. Associated deposits contain stone artefacts and animal remains, including Komodo dragon and an endemic, dwarfed species of Stegodon. H. floresiensis originated from an early dispersal of Homo erectus (including specimens referred to as Homo ergaster and Homo georgicus)1 that reached Flores, and then survived on this island refuge until relatively recently. It overlapped significantly in time with Homo sapiens in the region2, 3, but we do not know if or how the two species interacted