330 research outputs found

    Japan Tsunami Current Flows Observed by HF Radars on Two Continents

    Get PDF
    Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no detailed verification of flow patterns nor area measurements have been possible. Here we present unique HF-radar area observations of the tsunami signal seen in current velocities as the wave train approaches the coast. Networks of coastal HF-radars are now routinely observing surface currents in many countries and we report clear results from five HF radar sites spanning a distance of 8,200 km on two continents following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. We confirm the tsunami signal with three different methodologies and compare the currents observed with coastal sea level fluctuations at tide gauges. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. Data from these and other radars around the Pacific rim can be used to further develop radar as an important tool to aid in tsunami observation and warning as well as post-processing comparisons between observation and model predictions

    An attempt of dissemination of potential fishing zones prediction map of Japanese common squid in the coastal water, southwestern Hokkaido, Japan

    Get PDF
    Accurate prediction of potential fishing zones is regarded as one of the most immediate and effective approaches in operational fisheries. It helps fishermen reduce their cost on fuel and also decrease the uncertainty of their fish catches. To predict potential fishing zones of Japanese common squid, we derived fishing positions from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS), combine with bathymetry and model-derived environmental factors from the 4D-VAR data assimilation system and fitted using habitat suitability index (HSI) model. Validations with an independent DMSP/OLS dataset showed better performance of the model in figuring out the squid aggregations than our previous model established with satellite-derived environmental data. Nighttime visible images during June and early July of 2013 derived from Day/Night band (DNB) of Visible Infrared Imaging Radiometer Suite (VIIRS) sensor with a better resolution and quality compared to DMSP/OLS, were also applied for validation and results showed differences of fitness between actual fishing activities and predictions in Japan Sea and Tsugaru Strait

    Effects of hydrographic conditions on the transport of neon flying squid Ommastrephes bartramii larvae in the North Pacific Ocean

    Get PDF
    The neon flying squid, Ommastrephes bartramii, is widespread in subtropical and temperate regions. In the North Pacific Ocean, the species is comprised of two spawning cohorts; an autumn cohort and a winter-spring cohort. Interestingly, despite their apparently contiguous hatching periods, there is a marked disparity in the mantle length of both cohorts. We hypothesized that differences in the ambient temperature during larval development were responsible for the observed disparity in mantle size. Numerical simulations of ambient temperature revealed that water temperatures were approximately 1 °C higher in areas inhabited by the autumn cohort than they were in areas inhabited by the winter-spring cohort. The findings imply that differences in ambient water temperature and nutrient condition may be responsible for the observed differences in the growth of the autumn and winter-spring cohorts

    A new Approach to El Nino Prediction beyond the Spring Season

    Get PDF
    The enormous societal importance of accurate El Nino forecasts has long been recognized. Nonetheless, our predictive capabilities were once more shown to be inadequate in 2014 when an El Nino event was widely predicted by international climate centers but failed to materialize. This result highlighted the problem of the opaque spring persistent barrier, which severely restricts longer-term, accurate forecasting beyond boreal spring. Here we show that the role played by tropical seasonality in the evolution of the El Nino is changing on pentadal (five-year) to decadal timescales and thus that El Nino predictions beyond boreal spring will inevitably be uncertain if this change is neglected. To address this problem, our new coupled climate simulation incorporates these long-term influences directly and generates accurate hindcasts for the 7 major historical El Ninos. The error value between predicted and observed sea surface temperature (SST) in a specific tropical region (5°N-5°S and 170°-120°W) can consequently be reduced by 0.6 Kelvin for one-year predictions. This correction is substantial since an "El Nino" is confirmed when the SST anomaly becomes greater than +0.5 Kelvin. Our 2014 forecast is in line with the observed development of the tropical climate

    Simultaneous assimilation of surface drifter data, satellite and in situ observations for improved estimates of meso-scale variability in the Kuroshio Extension Region

    Get PDF
    In order to better estimate meso-scale variabilities in the energetic Kuroshio Extension (KE) region, simultaneous assimilation of drifter-derived velocity data, together with satellite and in situ hydrographic data, is attempted by using a high-resolution 4-dimensional variational data assimilation (4D-VAR) system. Our experimental results, both with and without assimilation of drifter data (Exp. Drf and Exp. Ref, respectively) for the period during Aug–Oct 2005, show that the reproduced fields in Exp. Drf better reflect the observed meso-scale features such as the KE meandering jet and associated eddies. The adjoint sensitivity analysis indicates that our 4D-VAR system has the ability to provide a more realistic timeseries of the meandering jet structures that play a key role in the intergyre exchange between the subtropical and subarctic gyres in the North Pacific. In addition, the observed information from the surface drifters works to improve the subsurface structure. These results illustrate the advantage of our 4D-VAR simultaneous assimilation with the addition of drifter-derived surface velocity information

    Specifying Air-Sea Exchange Coefficients in the High-Wind Regime of a Mature Tropical Cyclone by an Adjoint Data Assimilation Method

    Get PDF
    Uncertainty in the values of air-sea exchange coefficients has a detrimental effect on tropical cyclone (TC) modeling. Since a TC is one of the most destructive disasters, a method is required to reduce such uncertainty with respect to scientific progress and disaster prevention. In this study, we investigate the feasibility of specifying air-sea exchange coefficients in the high-wind regime of a mature TC by an identical twin experiment using the adjoint data assimilation method. The forward integration is executed by an intermediate cloud-resolving atmosphere-ocean coupled model, while the datasets for the backward integration are sampled as in multiple aircraft missions. Our results show that the air-sea exchange coefficients are successfully improved toward the “True” values. The updated air-sea exchange coefficients yield persistent improvements in the maximum wind speed, the radius of maximum wind, the radius of strong updraft, and in the distribution of water vapor. Without adjustment of the exchange coefficients, the analysis field of the inner-core is contaminated, even if the initial state is modified by the adjoint method

    Short-Time-Scale Processes in a Mature Hurricane as a Response to Sea Surface Fluctuations

    Get PDF
    To clarify the effect of fluctuations in surface stress and heat fluxes on the intensity of a mature-state hurricane, a sensitivity analysis is performed by using a cloud-permitting nonhydrostatic axisymmetric adjoint model. The response function of our experiment is tangential velocity at the top of the boundary layer in the eyewall. As a result of an integration backward to 4 min prior to the specified time, a dipole pattern appears in the sensitivity fields with respect to the vertical velocity, the potential temperature, and the mixing ratio of water vapor. A positive (negative) sensitivity is found in the hurricane interior (exterior) relative to the verification region. It exhibits an increase of tangential velocity 4 min after the introduction of positive (negative) perturbations in potential temperature or in the mixing ratio of water vapor in the interior (exterior). These sensitivities are not related to the changes in the central pressure field. With further backward integration, the sensitivity signals reach down to the surface and are located in the exterior region of the hurricane. While the sensitivity with respect to surface friction (heat flux) is strongly negative (positive) within a certain radius, the sensitivity can be positive (negative) beyond that radius. This means that both stronger friction and a reduction in moist air supply in the exterior region of the hurricane can serve to strengthen the maximum tangential velocity. To the authors’ knowledge, this effect has not been explained in previous studies
    corecore