19 research outputs found

    Protein quality and physical characteristics of Kisra (fermented sorghum pancake-like flatbread) made from tannin and non-tannin sorghum cultivars

    Get PDF
    Kisra is a naturally lactic acid bacteria- and yeast-fermented sorghum thin pancake-like flatbread produced in Sudan. Kisra has considerable potential as the basis for development of a gluten-free sandwich wrap. To help direct cultivar selection for commercial production of these products, two white, tan plant non-tannin Type I, one white Type II tannin, and one red Type III tannin sorghum cultivars were evaluated with respect to kisra protein quality and physical characteristics. Kisra from the non-tannin sorghums were flexible and had an open-textured structure with many regular gas cells, whereas those from the tannin sorghums were more brittle, denser in structure, and contained far fewer and smaller gas cells. Kisra from the tannin sorghums had the lowest reactive lysine content, in vitro protein digestibility, and Protein Digestibility Corrected Amino Score (PDCAAS), with values being lowest for the Type III sorghum. PDCAAS of kisra from the Type III sorghum was only 0.12, less than half of that from the Type I sorghums. As the tannins in tannin sorghums adversely affect kisra protein quality and physical characteristics, white tan plant, non-tannin sorghum cultivars are most suitable for kisra production and for development of wrap-type sorghum-based baked goods.The South African National Research Foundation for a fellowship for AMAE.http://cerealchemistry.aaccnet.or

    Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Medicinal Fungus Cordyceps with Its Nutraceutical and Therapeutic Potential

    Get PDF
    Cordyceps is a rare naturally occurring entomopathogenic fungus usually found at high altitudes on the Himalayan plateau and a well-known medicinal mushroom in traditional Chinese medicine. Cordyceps contains various bioactive components, out of which, cordycepin is considered most vital, due to its utmost therapeutic as well as nutraceutical potential. Moreover, the structure similarity of cordycepin with adenosine makes it an important bioactive component, with difference of only hydroxyl group, lacking in the 3′ position of its ribose moiety. Cordycepin is known for various nutraceutical and therapeutic potential, such as anti-diabetic, anti-hyperlipidemia, anti-fungal, anti-inflammatory, immunomodulatory, antioxidant, anti-aging, anticancer, antiviral, hepato-protective, hypo-sexuality, cardiovascular diseases, antimalarial, anti-osteoporotic, anti-arthritic, cosmeceutical etc. which makes it a most valuable medicinal mushroom for helping in maintaining good health. In this review, effort has been made to bring altogether the possible wide range of cordycepin’s nutraceutical potential along with its pharmacological actions and possible mechanism. Additionally, it also summarizes the details of cordycepin based nutraceuticals predominantly available in the market with expected global value. Moreover, this review will attract the attention of food scientists, nutritionists, pharmaceutical and food industries to improve the use of bioactive molecule cordycepin for nutraceutical purposes with commercialization to aid and promote healthy lifestyle, wellness and wellbeing

    Biosurfactant derived from probiotic Lactobacillus acidophilus exhibits broad-spectrum antibiofilm activity and inhibits the quorum sensing-regulated virulence

    Get PDF
    Antimicrobial resistance by pathogenic bacteria has become a global risk to human health in recent years. The most promising approach to combating antimicrobial resistance is to target virulent traits of bacteria. In the present study, a biosurfactant derived from the probiotic strain Lactobacillus acidophilus was tested against three Gram-negative bacteria to evaluate its inhibitory potential on their biofilms, and whether it affected the virulence factors controlled by quorum sensing (QS). A reduction in the virulence factors of Chromobacterium violaceum (violacein production), Serratia marcescens (prodigiosin production) and Pseudomonas aeruginosa (pyocyanin, total protease, LasB elastase and LasA protease production) was observed at different sub-MIC concentrations in a dose-dependent manner. Biofilm development was reduced by 65.76%, 70.64% and 58.12% at the highest sub-MIC levels for C. violaceum, P. aeruginosa and S. marcescens, respectively. Biofilm formation on glass surfaces exhibited significant reduction, with less bacterial aggregation and reduced formation of extracellular polymeric materials. Additionally, swimming motility and exopolysaccharides (EPS) production were shown to be reduced in the presence of the L. acidophilus-derived biosurfactant. Furthermore, molecular docking analysis performed on compounds identified through gas chromatography–mass spectrometry (GC-MS) analysis of QS and biofilm proteins yielded further insights into the mechanism underlying the anti-QS activity. Therefore, the present study has clearly demonstrated that a biosurfactant derived from L. acidophilus can significantly inhibit virulence factors of Gram-negative pathogenic bacteria. This could provide an effective method to inhibit the formation of biofilms and QS in Gram-negative bacteria

    Deciphering the Molecular Mechanism Responsible for Efficiently Inhibiting Metastasis of Human Non-Small Cell Lung and Colorectal Cancer Cells Targeting the Matrix Metalloproteinases by Selaginella repanda

    Get PDF
    Selaginella species are known to have antimicrobial, antioxidant, anti-inflammatory, anti-diabetic as well as anticancer effects. However, no study has examined the cytotoxic and anti-metastatic efficacy of Selaginella repanda (S. repanda) to date. Therefore, this study aimed to evaluate the potential anti-metastatic properties of ethanol crude extract of S. repanda in human non-small-cell lung (A-549) and colorectal cancer (HCT-116) cells with possible mechanisms. Effect of S. repanda crude extract on the growth, adhesion, migration and invasion of the A-549 and HCT-116 were investigated. We demonstrated that S. repanda crude extract inhibited cell growth of metastatic cells in a dose and time dependent manner. Incubation of A-549 and HCT-116 cells with 100–500 µg/mL of S. repanda crude extract significantly inhibited cell adhesion to gelatin coated surface. In the migration and invasion assay, S. repanda crude extract also significantly inhibited cellular migration and invasion in both A-549 and HCT-116 cells. Moreover, reverse transcription-polymerase chain reaction, and real-time PCR (RT-PCR) analysis revealed that the activity and mRNA level of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2) and membrane type 1-matrix metalloproteinase (MT1-MMP) were inhibited. While the activity of tissue inhibitor matrix metalloproteinase 1 (TIMP-1); an inhibitor of MMPs was stimulated by S. repanda crude extract in a concentration-dependent manner. Therefore, the present study not only indicated the inhibition of motility and invasion of malignant cells by S. repanda, but also revealed that such effects were likely associated with the decrease in MMP-2/-9 expression of both A-549 and HCT-116 cells. This further suggests that S. repanda could be used as a potential source of anti-metastasis agent in pharmaceutical development for cancer therapy

    Targeting NF-κB signaling cascades of glioblastoma by a natural benzophenone, garcinol, via in vitro and molecular docking approaches

    Get PDF
    Glioblastoma multiforme (GBM) is regarded as the most aggressive form of brain tumor delineated by high cellular heterogeneity; it is resistant to conventional therapeutic regimens. In this study, the anti-cancer potential of garcinol, a naturally derived benzophenone, was assessed against GBM. During the analysis, we observed a reduction in the viability of rat glioblastoma C6 cells at a concentration of 30 µM of the extract (p < 0.001). Exposure to garcinol also induced nuclear fragmentation and condensation, as evidenced by DAPI-stained photomicrographs of C6 cells. The dissipation of mitochondrial membrane potential in a dose-dependent fashion was linked to the activation of caspases. Furthermore, it was observed that garcinol mediated the inhibition of NF-κB (p < 0.001) and decreased the expression of genes associated with cell survival (Bcl-XL, Bcl-2, and survivin) and proliferation (cyclin D1). Moreover, garcinol showed interaction with NF-κB through some important amino acid residues, such as Pro275, Trp258, Glu225, and Gly259 during molecular docking analysis. Comparative analysis with positive control (temozolomide) was also performed. We found that garcinol induced apoptotic cell death via inhibiting NF-κB activity in C6 cells, thus implicating it as a plausible therapeutic agent for GBM

    Biosynthesized Silver Nanoparticles from Eruca sativa Miller Leaf Extract Exhibits Antibacterial, Antioxidant, Anti-Quorum-Sensing, Antibiofilm, and Anti-Metastatic Activities

    No full text
    Worldwide, the primary problem today is the proliferation of cancer and secondary bacterial infections caused by biofilms, as they are the principal causes of death due to the lack of effective drugs. A great deal of biological activities of silver nanoparticles (AgNPs) have made them a brilliant choice for the development of new drugs in recent years. The present study was conducted to evaluate the anticancer, antibacterial, anti-QS, and antibiofilm effects of AgNPs synthesized from Eruca sativa (E. sativa) leaf extract. The ultraviolet–visible (UV–Vis) spectra showed a peak of surface plasmon resonance at 424 nm λmax, which corresponded to AgNP formation. The Fourier transform infrared spectroscopy (FT-IR) confirmed that biological moieties are involved for the development of AgNPs. Moreover, transmission electron microscopy (TEM) analyses confirmed the spherical shape and uniform size (8.11 to 15 nm) of the AgNPs. In human lung cancer cells (A549), the anticancer potential of AgNPs was examined by the MTT [3-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, scratch assay, and invasion assay. The results indicated that AgNPs inhibit the migration of A549 cells. The synthesized AgNPs showed MIC values of 12.5 µg/mL against Chromobacterium violaceum (C. violaceum) and 25 µg/mL against Pseudomonas aeruginosa (P. aeruginosa), which demonstrated their antibacterial abilities. Biological compounds that disable the QS system are being investigated as potential strategies for preventing bacterial infections. Thus, we analyzed the potential effectiveness of synthesized AgNPs in inhibiting QS-regulated virulence factors and biofilm formation in both strains of bacteria. In C. violaceum, the synthesized AgNPs significantly inhibited both violacein (85.18% at 1/2 × MIC) and acyl homoserine lactone (78.76% at 1/2 × MIC). QS inhibitory activity was also demonstrated in P. aeruginosa at a sub-MIC concentration (1/2 × MIC) by a reduction in pyocyanin activity (68.83%), total protease (68.50%), LasA activity (63.91%), and LasB activity (56.40%). Additionally, the exopolysaccharide production was significantly reduced in both C. violaceum (65.79% at 1/2 × MIC) and P. aeruginosa (57.65% at 1/2 × MIC). The formation of biofilm was also significantly inhibited at 1/2 × MIC in C. violaceum (76.49%) and in P. aeruginosa (65.31%). Moreover, a GC–MS analysis confirmed the presence of different classes of bioactive phytochemical constituents present in the leaf extract of E. sativa. On the basis of our results, we conclude that biologically synthesized AgNPs showed numerous multifunctional properties and have the potential to be used against human cancer and bacterial biofilm-related infections

    Effect of pH, temperature and incubation time on cordycepin production from Cordyceps militaris using solid-state fermentation on various substrates

    No full text
    El uso de Cordyceps militaris se ha convertido en piedra angular para el combate de numerosos problemas de salud, identificándose que su empleo produce numerosos efectos terapéuticos de amplio alcance. El presente estudio se centra en los efectos que las condiciones de fermentación de este hongo, entre ellas, el pH, la temperatura y el tiempo de incubación, así como la fermentación en estado sólido (FES) a base de sustratos sólidos (trigo, avena y arroz), tienen sobre la producción de cordicepina. Se constató que tanto la temperatura, como el pH y el tiempo de incubación tienen un efecto directo sobre la producción de cordicepina. Se comprobó que la mejor combinación posible para generar máxima producción de cordicepina es aquella que reúne 25°C de temperatura, pH de 5,5 y 21 días de tiempo de incubación. Por otra parte, se constató que la FES en medios de cultivo a base de sustratos sólidos tuvo como resultado la producción de cordicepina, evidenciándose que el medio de arroz generó la producción de cordicepina más elevada (814,60 mg/g), seguido por los medios de avena y trigo (638,85 y 565,20 mg/g, respectivamente). Por lo que, este método resultó una manera eficaz de elevar la producción de cordicepina a gran escala. El estudio puede tener una amplia aplicación en otros procesos de fermentación a nivel industrial.Cordyceps militaris has been a keystone in combating myriad health problems with innumerable far-reaching therapeutic effects. The present study focuses on effect of fermentation conditions such as (pH, temperature and incubation time) and solid-state fermentation (SSF) using solid substrates (wheat, oat and rice) on production of cordycepin. Temperature, pH and incubation time was found to have a direct effect on cordycepin production. The best possible combination of temperature, pH and incubation time was found to be 25°C, 5.5 and 21 days, respectively, for maximum cordycepin production. SSF of solid substrate medium culture leads to the production of cordycepin. Among the solid substrates, rice medium had highest cordycepin production (814.60 mg/g) followed by oat and wheat medium (638.85 and 565.20 mg/g, respectively). This method provides an effective way for increasing the cordycepin production at a large scale. This study could have a wide application in other fermentation processes at industrial level

    Effect of Storage on the Level of Aflatoxin M1 in Milk and Other Dairy Products Sold at Tripoli Province, Libya

    No full text
    Milk and dairy products are one of the chief sources of nutrition for human beings particularly for infant and children. Aflatoxin M1 (AFM1 ) a hydroxylated metabolite of aflatoxin B1 found in milk and milk productscauses serious health issues for human beings. The objective of this study was to evaluate the effect of storage on the level of aflatoxin M1 in milk and other dairy products sold at retail stores of Tripoli Province, Libya. Selected samples (Skimmed and cream milk, infant milk formula, butter, cheese, Cheddar, spread and slice) were evaluated by using specialized RIDASCREEN AFM1 competitive enzyme linked immune sorbent assay (ELISA) technique. Our investigation revealed that, the concentration of AFM1 increased with the duration of storage. Furthermore, we found that the newly manufactured samples had very low concentration of AFM1 and within the permitted range. Moreover, AFM1 concentration in skimmed and cream milk having 6 month shelf life had 5.00 ngkg-1 and 5.03 ngkg-1 respectively. Furthermore, both the expired skimmed and cream milk had AFM1 concentrations 121.8 ngkg-1 and 108.18 ngkg-1, respectively. In addition to that, we found that the levels of AFM1 in different dairy products varies with different shelf lives (12 and 1 month), such as cheddar (5.0 and 72.79 ngkg-1), Spread (5.30 and 60.03 ngkg-1), Slice (5.50 and 61.18 ngkg-1). Additionally, infant milk formula with shelf life of 24 months and expired samples had AFM1 less than 5.00 ngkg-1 and 60.8 ngkg-1, respectively. Based on our investigation, we found that the presence AFM1 in milk and milk products at high concentration may cause serious illness to consumers’ health and the consequent economic losses

    Phytochemistry, Bioactivities, Pharmacokinetics and Toxicity Prediction of <i>Selaginella repanda</i> with Its Anticancer Potential against Human Lung, Breast and Colorectal Carcinoma Cell Lines

    No full text
    In this study, we investigated the bioactive potential (antibacterial and antioxidant), anticancer activity and detailed phytochemical analysis of Selaginellarepanda (S. repanda) ethanolic crude extract for the very first time using different in vitro approaches. Furthermore, computer-aided prediction of pharmacokinetic properties and safety profile of the identified phytoconstituents were also employed in order to provide some useful insights for drug discovery. S. repanda, which is a rich source of potent natural bioactive compounds, showed promising antibacterial activity against the tested pathogenic bacteria (S. aureus, P. aeruginosa, E. coli and S. flexneri). The crude extract displayed favorable antioxidant activity against both 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 231.6 μg/mL) and H2O2 (IC50 = 288.3 μg/mL) molecules. S. repanda also showed favorable and effective anticancer activity against all three malignant cancer cells in a dose/time dependent manner. Higher activity was found against lung (A549) (IC50 = 341.1 μg/mL), followed by colon (HCT-116) (IC50 = 378.8 μg/mL) and breast (MCF-7) (IC50 = 428.3 μg/mL) cancer cells. High resolution-liquid chromatography–mass spectrometry (HR-LC–MS) data of S. repanda crude extract revealed the presence of diverse bioactive/chemical components, including fatty acids, alcohol, sugar, flavonoids, alkaloids, terpenoids, coumarins and phenolics, which can be the basis and major cause for its bioactive potential. Therefore, achieved results from this study confirmed the efficacy of S. repanda and a prospective source of naturally active biomolecules with antibacterial, antioxidant and anticancer potential. These phytocompounds alone with their favorable pharmacokinetics profile suggests good lead and efficiency of S. repanda with no toxicity risks. Finally, further in vivo experimental investigations can be promoted as probable candidates for various therapeutic functions, drug discovery and development

    Biosynthesized Silver Nanoparticles Derived from Probiotic <i>Lactobacillus rhamnosus</i> (AgNPs-LR) Targeting Biofilm Formation and Quorum Sensing-Mediated Virulence Factors

    No full text
    In recent years, bacterial pathogens have developed resistance to antimicrobial agents that have created a global threat to human health and environment. As a novel approach to combating antimicrobial resistance (AMR), targeting bacteria’s virulent traits that can be explained by quorum sensing (QS) is considered to be one of the most promising approaches. In the present study, biologically synthesized silver nanoparticles derived from Lactobacillus rhamnosus (AgNPs-LR) were tested against three Gram-negative bacteria to determine whether they inhibited the formation of biofilms and triggered the virulence factors controlled by QS. In C. violaceum and S. marcescens, a remarkable inhibition (>70%) of QS-mediated violacein and prodigiosin production was recorded, respectively. A dose-dependent decrease in virulence factors of P. aeruginosa (pyocyanin, pyoverdine, LasA protease, LasB elastase and rhamnolipid production) was also observed with AgNPs-LR. The biofilm development was reduced by 72.56%, 61.70%, and 64.66% at highest sub-MIC for C. violaceum, S. marcescens and P. aeruginosa, respectively. Observations on glass surfaces have shown remarkable reductions in biofilm formation, with less aggregation of bacteria and a reduced amount of extra polymeric materials being formed from the bacteria. Moreover, swimming motility and exopolysaccharides (EPS) was also found to reduce in the presence of AgNPs-LR. Therefore, these results clearly demonstrate that AgNPs-LR is highly effective in inhibiting the development of biofilms and the QS-mediated virulent traits of Gram-negative bacteria. In the future, AgNPs-LR may be used as an alternative to conventional antibiotics for the treatment of bacterial infections after careful evaluation in animal models, especially for the development of topical antimicrobial agents
    corecore