7,304 research outputs found

    First Law, Counterterms and Kerr-AdS_5 Black Holes

    Full text link
    We apply the counterterm subtraction technique to calculate the action and other quantities for the Kerr--AdS black hole in five dimensions using two boundary metrics; the Einstein universe and rotating Einstein universe with arbitrary angular velocity. In both cases, the resulting thermodynamic quantities satisfy the first law of thermodynamics. We point out that the reason for the violation of the first law in previous calculations is that the rotating Einstein universe, used as a boundary metric, was rotating with an angular velocity that depends on the black hole rotation parameter. Using a new coordinate system with a boundary metric that has an arbitrary angular velocity, one can show that the resulting physical quantities satisfy the first law.Comment: 19 pages, 1 figur

    A new definition of Bejan number

    Get PDF
    A new definition of Bejan number will be generated by replacing the thermal diffusivity with the mass diffusivity. For example, the Schmidt number is the mass transfer analog of the Prandtl number. For the case of Reynolds analogy (Sc = Pr = = 1), both current and new definitions of Bejan number are the same. This new definition is useful and needed for diffusion of mass (mass diffusion)

    Automatic skin segmentation for gesture recognition combining region and support vector machine active learning

    Get PDF
    Skin segmentation is the cornerstone of many applications such as gesture recognition, face detection, and objectionable image filtering. In this paper, we attempt to address the skin segmentation problem for gesture recognition. Initially, given a gesture video sequence, a generic skin model is applied to the first couple of frames to automatically collect the training data. Then, an SVM classifier based on active learning is used to identify the skin pixels. Finally, the results are improved by incorporating region segmentation. The proposed algorithm is fully automatic and adaptive to different signers. We have tested our approach on the ECHO database. Comparing with other existing algorithms, our method could achieve better performance

    DD-dimensional charged Anti-de-Sitter black holes in f(T)f(T) gravity

    Full text link
    We present a DD-dimensional charged Anti-de-Sitter black hole solutions in f(T)f(T) gravity, where f(T)=T+βT2f(T)=T+\beta T^2 and D4D \geq 4. These solutions are characterized by flat or cylindrical horizons. The interesting feature of these solutions is the existence of inseparable electric monopole and quadrupole terms in the potential which share related momenta, in contrast with most of the known charged black hole solutions in General Relativity and its extensions. Furthermore, these solutions have curvature singularities which are milder than those of the known charged black hole solutions in General Relativity and Teleparallel Gravity. This feature can be shown by calculating some invariants of curvature and torsion tensors. Furthermore, we calculate the total energy of these black holes using the energy-momentum tensor. Finally, we show that these charged black hole solutions violate the first law of thermodynamics in agreement with previous results.Comment: 11 Pages, will appear in JHE

    Hagen number versus Bejan number

    Get PDF
    This study presents Hagen number vs. Bejan number. Although their physical meaning is not the same because the former represents the dimensionless pressure gradient while the latter represents the dimensionless pressure drop, it will be shown that Hagen number coincides with Bejan number in cases where the characteristic length (l) is equal to the flow length (L). Also, a new expression of Bejan number in the Hagen-Poiseuille flow will be introduced. At the end, extending the Hagen number to a general form will be presented. For the case of Reynolds analogy (Pr = Sc = 1), all these three definitions of Hagen number will be the same
    corecore