40 research outputs found

    Electrically driven convection in a thin annular film undergoing circular Couette flow

    Full text link
    We investigate the linear stability of a thin, suspended, annular film of conducting fluid with a voltage difference applied between its inner and outer edges. For a sufficiently large voltage, such a film is unstable to radially-driven electroconvection due to charges which develop on its free surfaces. The film can also be subjected to a Couette shear by rotating its inner edge. This combination is experimentally realized using films of smectic A liquid crystals. In the absence of shear, the convective flow consists of a stationary, azimuthally one-dimensional pattern of symmetric, counter-rotating vortex pairs. When Couette flow is applied, an azimuthally traveling pattern results. When viewed in a co-rotating frame, the traveling pattern consists of pairs of asymmetric vortices. We calculate the neutral stability boundary for arbitrary radius ratio α\alpha and Reynolds number Re{{\cal R} e} of the shear flow, and obtain the critical control parameter Rc(α,Re){\cal R}_c (\alpha, {{\cal R} e}) and the critical azimuthal mode number mc(α,Re){m_c (\alpha, {{\cal R} e})}. The Couette flow suppresses the onset of electroconvection, so that Rc(α,Re)>Rc(α,0){\cal R}_c (\alpha, {{\cal R} e}) > {\cal R}_c (\alpha,0). The calculated suppression is compared with experiments performed at α=0.56\alpha = 0.56 and 0Re0.220 \leq {{\cal R} e} \leq 0.22 .Comment: 17 pages, 2 column with 9 included eps figures. See also http://mobydick.physics.utoronto.c

    Bifurcations in annular electroconvection with an imposed shear

    Full text link
    We report an experimental study of the primary bifurcation in electrically-driven convection in a freely suspended film. A weakly conducting, submicron thick smectic liquid crystal film was supported by concentric circular electrodes. It electroconvected when a sufficiently large voltage VV was applied between its inner and outer edges. The film could sustain rapid flows and yet remain strictly two-dimensional. By rotation of the inner electrode, a circular Couette shear could be independently imposed. The control parameters were a dimensionless number R{\cal R}, analogous to the Rayleigh number, which is V2\propto V^2 and the Reynolds number Re{\cal R}e of the azimuthal shear flow. The geometrical and material properties of the film were characterized by the radius ratio α\alpha, and a Prandtl-like number P{\cal P}. Using measurements of current-voltage characteristics of a large number of films, we examined the onset of electroconvection over a broad range of α\alpha, P{\cal P} and Re{\cal R}e. We compared this data quantitatively to the results of linear stability theory. This could be done with essentially no adjustable parameters. The current-voltage data above onset were then used to infer the amplitude of electroconvection in the weakly nonlinear regime by fitting them to a steady-state amplitude equation of the Landau form. We show how the primary bifurcation can be tuned between supercritical and subcritical by changing α\alpha and Re{\cal R}e.Comment: 17 pages, 12 figures. Submitted to Phys. Rev. E. Minor changes after refereeing. See also http://mobydick.physics.utoronto.c

    Transferlernen in der Biomedizin

    No full text

    Mapping single-cell data to reference atlases by transfer learning

    No full text
    Large single-cell atlases are now routinely generated to serve as references for analysis of smaller-scale studies. Yet learning from reference data is complicated by batch effects between datasets, limited availability of computational resources and sharing restrictions on raw data. Here we introduce a deep learning strategy for mapping query datasets on top of a reference called single-cell architectural surgery (scArches). scArches uses transfer learning and parameter optimization to enable efficient, decentralized, iterative reference building and contextualization of new datasets with existing references without sharing raw data. Using examples from mouse brain, pancreas, immune and whole-organism atlases, we show that scArches preserves biological state information while removing batch effects, despite using four orders of magnitude fewer parameters than de novo integration. scArches generalizes to multimodal reference mapping, allowing imputation of missing modalities. Finally, scArches retains coronavirus disease 2019 (COVID-19) disease variation when mapping to a healthy reference, enabling the discovery of disease-specific cell states. scArches will facilitate collaborative projects by enabling iterative construction, updating, sharing and efficient use of reference atlases
    corecore